您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 中考特殊平行四边形证明及计算经典习题及答案
DSE金牌数学专题系列经典专题系列初中数学中考特殊四边形证明及计算一.解答题1.(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题).718351分析:(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF.(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠1=∠2,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,由折叠的性质可得:AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A1IE与△CGF中,,∴△A1IE≌△CGF(AAS),∴EI=FG.点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.2.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.考点:平行四边形的性质.718351专题:探究型.分析:在图2中,因为四边形PEAF为平行四边形,所以PE=AF,又三角形FDC为等腰三角形,所以FD=PF+PD=FC,即PE+PD+PF=AC=AB,在图3中,PE=AF可证,FD=PF﹣PD=CF,即PF﹣PD+PE=AC=AB.解答:解:图2结论:PD+PE+PF=AB.证明:过点P作MN∥BC分别交AB,AC于M,N两点,∵PE∥AC,PF∥AB,∴四边形AEPF是平行四边形,∵MN∥BC,PF∥AB∴四边形BDPM是平行四边形,∴AE=PF,∠EPM=∠ANM=∠C,∵AB=AC,∴∠EMP=∠B,∴∠EMP=∠EPM,∴PE=EM,∴PE+PF=AE+EM=AM.∵四边形BDPM是平行四边形,∴MB=PD.∴PD+PE+PF=MB+AM=AB,即PD+PE+PF=AB.图3结论:PE+PF﹣PD=AB.点评:此题主要考查了平行四边形的性质,难易程度适中,读懂信息,把握规律是解题的关键.3.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质.718351专题:证明题.分析:(1)根据△ABC和△AED是等边三角形,D是BC的中点,ED∥CF,求证△ABD≌△CAF,进而求证四边形EDCF是平行四边形即可;(2)在(1)的条件下可直接写出△AEF和△ABC的面积比;(3)根据ED∥FC,结合∠ACB=60°,得出∠ACF=∠BAD,求证△ABD≌△CAF,得出ED=CF,进而求证四边形EDCF是平行四边形,即可证明EF=DC.解答:(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30°,∵△AED是等边三角形,∴AD=AE,∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD.(2)解:△AEF和△ABC的面积比为:1:4;(3)解:成立.理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.点评:此题主要考查学生对平行四边形的判定和性质、全等三角形的判定和性质、等边三角形的性质的理解和掌握.此题涉及到的知识点较多,综合性较强,难度较大.4.如图,在菱形ABCD中,AB=10,∠BAD=60度.点M从点A以每秒1个单位长的速度沿着AD边向点D移动;设点M移动的时间为t秒(0≤t≤10).(1)点N为BC边上任意一点,在点M移动过程中,线段MN是否一定可以将菱形分割成面积相等的两部分并说明理由;(2)点N从点B(与点M出发的时刻相同)以每秒2个单位长的速度沿着BC边向点C移动,在什么时刻,梯形ABNM的面积最大并求出面积的最大值;(3)点N从点B(与点M出发的时刻相同)以每秒a(a≥2)个单位长的速度沿着射线BC方向(可以超越C点)移动,过点M作MP∥AB,交BC于点P.当△MPN≌△ABC时,设△MPN与菱形ABCD重叠部分的面积为S,求出用t表示S的关系式,井求当S=0时的值.考点:菱形的性质;二次函数的最值;全等三角形的性质.718351专题:压轴题.分析:(1)菱形被分割成面积相等的两部分,那么分成的两个梯形的面积相等,而两个梯形的高相等,只需上下底的和相等即可.(2)易得菱形的高,那么用t表示出梯形的面积,用t的最值即可求得梯形的最大面积.(3)易得△MNP的面积为菱形面积的一半,求得不重合部分的面积,让菱形面积的一半减去即可.解答:解:(1)设:BN=a,CN=10﹣a(0≤a≤10)因为,点M从点A以每秒1个单位长的速度沿着AD边向点D移动,点M移动的时间为t秒(0≤t≤10)所以,AM=1×t=t(0≤t≤10),MD=10﹣t(0≤t≤10).所以,梯形AMNB的面积=(AM+BN)×菱形高÷2=(t+a)×菱形高÷2;梯形MNCD的面积=(MD+NC)×菱形高÷2=[(10﹣t)+(10﹣a)]×菱形高÷2当梯形AMNB的面积=梯形MNCD的面积时,即t+a=10,(0≤t≤10),(0≤a≤10)所以,当t+a=10,(0≤t≤10),(0≤a≤10)时,可出现线段MN一定可以将菱形分割成面积相等的两部分.(2)点N从点B以每秒2个单位长的速度沿着BC边向点C移动,设点N移动的时间为t,可知0≤t≤5,因为AB=10,∠BAD=60°,所以菱形高=5,AM=1×t=t,BN=2×t=2t.所以梯形ABNM的面积=(AM+BN)×菱形高÷2=3t×5×=t(0≤t≤5).所以当t=5时,梯形ABNM的面积最大,其数值为.(3)当△MPN≌△ABC时,则△ABC的面积=△MPN的面积,则△MPN的面积为菱形面积的一半为25;因为要全等必有MN∥AC,∴N在C点外,所以不重合处面积为×(at﹣10)2×∴重合处为S=25﹣,当S=0时,即PM在CD上,∴a=2.点评:本题考查了菱形以及相应的三角函数的性质,注意使用两条平行线间的距离相等等条件.5.如图,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定顶点在矩形边上的菱形叫做矩形的内接菱形,现给出(Ⅰ)、(Ⅱ)、(Ⅲ)三个命题:命题(Ⅰ):图①中,若AH=BG=AB,则四边形ABGH是矩形ABCD的内接菱形;命题(Ⅱ):图②中,若点E、F、G和H分别是AB、BC、CD和DE的中点,则四边形EFGH是矩形ABCD的内接菱形;命题(Ⅲ):图③中,若EF垂直平分对角线AC,变BC于点E,交AD于点F,交AC于点O,则四边形AECF是矩形ABCD的内接菱形.请解决下列问题:(1)命题(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命题吗?请你在其中选择一个,并证明它是真命题或假命题;(2)画出一个新的矩形内接菱形(即与你在(1)中所确认的,但不全等的内接菱形).(3)试探究比较图①,②,③中的四边形ABGH、EFGH、AECF的面积大小关系.考点:菱形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;三角形中位线定理;矩形的性质;命题与定理.718351分析:(1)①先证明是平行四边形,再根据一组邻边相等证明;②根据三角形中位线定理得到四条边都相等;③先根据三角形全等证明是平行四边形,再根据对角线互相垂直证明是菱形;(2)先作一条对角线,在作出它的垂直平分线分别与矩形的边相交,连接四个交点即可.(3)分别表示出三个菱形的面积,根据边的关系即可得出图(1)图(2)的面积都小于图(3)的面积;根据a与b的大小关系,分a>2b,a=2b和a<2b三种情况讨论.解答:解:(1)都是真命题;若选(Ⅰ)证明如下:∵矩形ABCD,∴AD∥BC,∵AH=BG,∴四边形ABGH是平行四边形,∴AB=HG,∴AB=HG=AH=BG,∴四边形ABGH是菱形;若选(Ⅱ),证明如下:∵矩形ABCD,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H是中点,∴AE=BE=CG=DG,AH=HD=BF=FC,∴△AEH≌△BEF≌△DGH≌△GCF,∴EF=FG=GH=HE,∴四边形EFGH是菱形;若选(Ⅲ),证明如下∵EF垂直平分AC,∴FA=FC,EA=EC,又∵矩形ABCD,∴AD∥BC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△ADF≌△COE(SAS)∴AF=CE,∴AF=FC=CE=EA,∴四边形AECF是菱形;(2)如图4所示:AH=CF,EG垂直平分对角线FH,四边形HEFG是菱形;(3)SABGH=a2,SEFGH=ab,S菱形AECF=,∵﹣a2==>0(b>a)∴S菱形AECF>SABGH.∵﹣ab===>0,∴S菱形AECF>SEFGH.∵a2﹣ab=a(a﹣b)∴当a>b,即0<b<2a时,S菱形ABGH>S菱形EFGH;当a=b,即b=2a时,S菱形ABGH=S菱形EFGH;当a<b,即b>a时,S菱形ABGH<S菱形EFGH.综上所述:当O<b<2a时,SEFGH<SABGH<S菱形AECF.当b=2a时,SEFGH=SABGH<S菱形AECF.当b>2a时SABGH<SEFGH<S菱形AECF.点评:本题主要考查了菱形的判定与性质,三角形中位线定理,全等三角形的判定与性质以及矩形的性质等知识点.注意第(3)题需要分类讨论,以防错解.6.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.考点:菱形的判定与性质;全等三角形的判定与性质;等腰直角三角形;平行四边形的性质;正方形的判定与性质.718351分析:(1)平行四边形的性质可得AD∥BC,AB
本文标题:中考特殊平行四边形证明及计算经典习题及答案
链接地址:https://www.777doc.com/doc-1658617 .html