您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2.2.1对数与对数运算(2)课件
对数的运算指数对以a为底N的对数ab=Nb=logaN指数式对数式底数对底数幂值对真数1.关系:2.特殊对数:1)常用对数—以10为底的对数;lgN2)自然对数—以e为底的对数;lnN3.对数指数恒等式:NaNalog4.重要结论:1)logaa=1;2)loga1=0复习上节内容2.对数的性质(1)负数和零没有对数;(2)1的对数是零,即loga1=0;(3)底的对数等于1,即logaa=10N1a0aNaNloga,且3.对数恒等式1.对数一般地,如果ax=N(a>0,a≠1),那么数x叫做以a为底N的对数,记作logaN=x,其中a叫做对数的底数,N叫做真数,式子logaN叫做对数式.常用对数N的常用对数log10N,记作lgN自然对数N的自然对数logeN简记作lnN.新授内容:积、商、幂的对数运算法则:如果a0,a1,M0,N0有:)4(Mlogn1Mlog)3(R)M(nnlogMlog)2(NlogMlogNMlog)1(NlogMlog(MN)loganaanaaaaaaa证明:①设,logpMa,logqNa由对数的定义可以得:,paMqaN∴MN=qpaaqpaqpMNloga即证得)1(NlogMlog(MN)logaaa正因数的积的对数等于同一底数各个因数的对数的和证明:②设,logpMa,logqNa由对数的定义可以得:,paMqaN∴qpaaqpaqpNMloga即证得NM)(2NlogMlogNMlogaaa两个正数的商的对数等于被乘数的对数减去除数的对数证明:③设,logpMa由对数的定义可以得:,paMnpnaMnpMlogna即证得)(3R)M(nnlogMlogana正数的幂的对数等于幂的底数的对数乘以幂指数)4(Mlogn1Mlogana正数的正的方根的对数等于被开方数的对数除以根指数.①简易语言表达:“积的对数=对数的和”…②有时逆向运用公式③真数的取值范围必须是),0(④对公式容易错误记忆,要特别注意:,loglog)(logNMMNaaaNMNMaaaloglog)(log分析运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.11025101010logloglog)(log)(log))((log5353222)(log)(log1021010210探索:把左右两列中一定相等的用线连起来NMaaloglogNMalognaMlog)(logMNaNMaaloglogMnalogNMaaloglog)log(NMNMaaloglog)log(NMnaM)(log例1计算)42(log)1(75227log)2(9讲解范例解:)42(log752522log724log522log1422log=5+14=19解:27log9333log23log23323讲解范例8log7log3log)3(732解:8log7og3log7327lg8lg3lg7lg2lg3lg2lg2lg32lg2lg3=3例2讲解范例解(1)解(2)用,logxa,logyazalog表示下列各式:32log)2(;(1)logzyxzxyaazxyzxyaaalog)(loglog3121232log)(loglogzyxzyxaaazyxaaalogloglog31212logloglogzyxaaazyxaaalog31log21log218lg7lg37lg214lg)1(例3计算:讲解范例解法一:18lg7lg37lg214lg18lg7lg)37lg(14lg218)37(714lg201lg)32lg(7lg37lg2)72lg(2)3lg22(lg7lg)3lg7(lg27lg2lg018lg7lg37lg214lg解法二:例3计算:讲解范例9lg243lg)2(3lg23lg525解:1023lg)10lg(32lg)3lg(2.1lg10lg38lg27lg)3(2213213253lg3lg9lg243lg)2(2.1lg10lg38lg27lg)3(12lg23lg)12lg23(lg2323练习(1)(4)(3)(2)1.求下列各式的值:15log5log332lg5lg31log3log553log6log2236log2)25lg()313(log5155log32log2110lg11log50133log12.用lgx,lgy,lgz表示下列各式:练习(1)(4)(3)(2))lg(xyzzxy2lgzxy3lg=lgx+2lgy-lgz;zyx2lg=lgx+lgy+lgz;=lgx+3lgy-21lgz;zyxlglg2lg21ylgxlg4lg3lg)y3x2lg()yxlg(.4已知例.yx的值求1、指数式与对数式:ab=Nb=logaN指数式对数式底数对底数幂值对真数指数对以a为底N的对数2、对数指数恒等式:NaNalog3、对数运算性质:a>0且a≠1,M>0,N>0(1)loga(MN)=logaM+logaN(2)loga=logaM-logaN(3)logaNn=nlogaN(n∈R)NM1、计算:(1)log535-2log5+log57-log51.837解:原式=log5(5×7)-2(log57-log53)+log57-log559=1+log57-2log57+2log53+log57-(log532-1)=1+2log53-2log53+1=2(2)lg25+lg2lg5+lg2解:原式=lg2+lg2lg+lg2210210=(1-lg2)2+lg2(1-lg2)+lg2=1-2lg2+lg22+lg2-lg22+lg2=12、已知lgx+lgy=2lg(x-2y),求的值。yx2log4loglog2122yx故解:由题2)2lg()lg(0200yxxyyxyx22440200yxyxxyyxyx045020022yxyxyxyxyxyxyxyx40200或4yx222log2=4
本文标题:2.2.1对数与对数运算(2)课件
链接地址:https://www.777doc.com/doc-1715693 .html