您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高一数学对数运算及对数函数试题
高一数学对数运算及对数函数试题一:选择题1.若log7[log3(log2x)]=0,则为()A.B.C.D.解:∵log7[log3(log2x)]=0,∴log3(log2x)=1,∴log2x=3,∴x=8,∴===.故选D.2.23(log9)(log4)()(A)14(B)12(C)2(D)4【答案】D3.的值是(C)A.12B.C.﹣12D.解:=log6(4×9)+2﹣16=﹣12,故选C.4.实数﹣•+lg4+2lg5的值为(D)A.25B.28C.32D.33解:﹣•+lg4+2lg5=﹣2×(﹣2)+lg(4×25)=27+4+2=33,故选D.5.已知lg2=a,10b=3,则log125可表示为()A.B.C.D.解:∵lg2=a,10b=3,∴lg3=b,∴log125===.故选C.6.lgx+lgy=2lg(x﹣2y),则的值的集合是()A.{1}B.{2}C.{1,0}D.{2,0}解:∵lgx+lgy=2lg(x﹣2y),∴lg(x﹣2y)2=lgxy,∴(x﹣2y)2=xy,∴x2﹣5xy+4y2=0,∴﹣5•+4=0,∴=1(舍去)或=4,故=log24=2,故选B.7.已知f(ex)=x,则f(5)等于(D)A.e5B.5eC.log5eD.ln5解:∵f(ex)=x,令ex=t,解得x=lnt,∴f(t)=lnt(t>0),∴f(5)=ln5,故选D.8.设,则a,b,c的大小顺序为()A.a>b>cB.a>c>bC.b>a>cD.c<a<b解:因为,又1.8>1.5>1.44,函数y=2x是增函数,所以a>c>b.故选B.9.已知幂函数y=f(x)的图象过点,则log2f(2)的值为(A)A.B.﹣C.2D.﹣2解:设log2f(2)=n,则f(2)=2n∴f(x)=xn又∵由幂函数y=f(x)的图象过点∴,故选A.10.若非零实数a、b、c满足,则的值等于()A.1B.2C.3D.4解:∵,∴设=m,a=log5m,b=log2m,c=2lgm,∴==2lgm(logm5+logm2)=2lgm•logm10=2.故选B.11.已知f(x)=,则f(log23)的值是(A)A.B.C.24D.12解:∵1<log23<3∴f(log23)=f(1+log23)=f(log26)==故选:A.12.已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=(A)A.B.C.D.解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)=故选A.13.若loga,则a的取值范围是()A.a1B.aC.aD.a或a1【答案】D14.函数2()ln(43x)fx+-x的单调递减区间是()A.3(,]2B.3[,)2C.3(1,]2D.3[,4)2【答案】D15.已知函数xxfa2log1在其定义域上单调递减,则函数21logxxga的单调减区间是()A.0,B.0,1C.,0D.1,0【答案】B16.已知函数212()log()fxxaxa,在1()2,上是增函数,则实数a的取值范围是()A.[1),B.1[1)2,C.1[1]2,D.(1],【答案】C17.已知函数xaxf)(0(a且1a)与函数xxgalog)(0(a且1a)的图象有交点,函数)()()(xgxfx在区间]2,1[上的最大值为21,则)(x在区间]2,1[上的最小值为()A.21;B.21;C.45;D.43.【答案】D18.当102x时,4logxax,则a的取值范围是()A.(0,22)B.(22,1)C.(1,2)D.(2,2)【答案】B二:填空题19.若5a=2,b=log53,则53a﹣2b=.解:∵5a=2,b=log53,∴5b=3,53a﹣2b=(5a)3÷(5b)2=23÷32=,故答案为:.20.求值:=.解:==+2+2=.故答案为:.21.设=.解:∵2a=5b=t,∴a=log2t,b=log5t,∴===logt2+logt5=logt10=3,∴t3=10,∴t=.故答案为:.22.方程的解为.解:当x≤0时,无解当x>0时,(2x)2﹣2•2x﹣1=0解得:即x=故答案为:23.若函数23()loglog2fxaxbx,且1()52012f,则(2012)f的值为_.【答案】-124.函数y=20.5(43)xx㏒的定义域为________.【答案】31{|10}44xxx或25.已知函数21()log()2afxaxx(01aa且)在[1,2]上恒正,则实数a的取值范围为.【答案】153(,)(,)282三:解答题26.计算.解:=+﹣102×10lg2=9﹣2﹣100×2=193.27.若2()fxxxb,且22(log)log[()]2(1)fabfaa,.(1)求2(log)fx的最小值及对应的x值;(2)若不等式2(log)(1)fxf的解集记为A,不等式2log[()](1)fxf的解集记为B,求AB.解:(1)∵2()fxxxb∴2222(log)loglogfaaabb,∴22log1log0aa或∴a=2或a=1(舍)又∵2222log[()]log()log(2)2faaabb∴24b∴b=2∴2()2fxxx,22222217(log)loglog2(log)24fxxxx∴当21log22xx,即时,2(log)fx的最小值为74(2)由2222(log)(1)loglog22fxfxx得∴22log(log1)0xx∴22log0log1xx或∴012xx或,即{|012}Axxx或由222log[()](1)log(2)2fxfxx得∴202412xxx解得∴{|12}Bxx∴{|01}ABxx28.设函数22()log(4)log(2)fxxx,144x,若xt2log,求t取值范围;(2)求()fx的最值,并给出最值时对应的x的值。解:(1)441,log2xxt4log41log22t即22t(2)2log3log222xxxfxt2log令,则,41232322ttty2322,23log23xxt即当时,41minxf当12,42maxxfxt时即29.已知函数f(x)=loga[(a1-2)x+1]在区间[1,2]上恒为正,求实数a的取值范围.解:∵f(x)=loga[(a1-2)x+1]在[1,2]上恒正,(1)当a>1时,真数μ=(a1-2)x+1>1,∴(a1-2)x>0,∴a1-2>0即a<21(舍).(2)当0<a<1时,0<μ<1∴11)21(01)21(xaxa要使①式当x∈[1,2]恒成立,则101,(2)110210,(2)2103aaaa∴0<a<32.要使②式成立,则(a1-2)x<0,只要a1-2<0,∴a1<2,∴a>21.综上21<a<32.30.已知函数)421(log)(5.0axfxx;(1)若0a,求)(xf的值域;(2)在(1)的条件下,判断)(xf的单调性;(3)当]1,(x时)(xf有意义求实a的范围。解:(1)若0a,)0,()(,121),)(21(log)(5.0xfRxxfxx的值域;(2),121),21(log)(5.0xxtxf令,21,log)(5.0单调递增单调递减xttxf.)21(log)(5.0上单调递减在Rxfx或用定义法说明。(3)]1,(x时,)421(log)(5.0axfxx有意义,]1,(x时,0421axx①②,2141)()1(,2141)(,2141单调递增令xxxxxxxuxxua),43(,43)1()(maxauxu31.已知函数1()log1amxfxx(0,1,1)aam是奇函数.(1)求实数m的值;(2)判断函数()fx在(1,)上的单调性,并给出证明;(3)当(,2)xna时,函数()fx的值域是(1,),求实数a与n的值解:(1)由已知条件得()()0fxfx对定义域中的x均成立.11loglog011aamxmxxx即11111mxmxxx22211mxx对定义域中的x均成立.21m即1m(舍去)或1m.(2)由(1)得1()log1axfxx设11221111xxtxxx,当121xx时,211212122()2211(1)(1)xxttxxxx12tt.当1a时,12loglogaatt,即12()()fxfx.当1a时,()fx在(1,)上是减函数.同理当01a时,()fx在(1,)上是增函数.(3)函数()fx的定义域为(1,)(,1),①21na,01a.()fx在(,2)na为增函数,要使值域为(1,),则1log1121anna(无解)②12na,3a.()fx在(,2)na为减函数,要使()fx的值域为(1,),则11log13anaa23a,1n.32.已知函数)(xf是定义在,00,上的奇函数,当0x时,xxf2log)(.(Ⅰ)求当0x时,函数)(xf的表达式;(Ⅱ)求满足1)1(xf的x的取值范围;(Ⅲ)已知对于任意的Nk,不等式12kk恒成立,求证:函数)(xf的图象与直线xy没有交点.解:(Ⅰ)当0x时,)(log)(2xxf.(Ⅱ)0)(log)0(log)(22xxxxxf,∴1)1(log)1()1(log01)1(log)01()1(log)1(2222xxxxxxxxxf因为1)1(xf,∴1)1(log12xx或1)1(log12xx∴3x或211x.(Ⅲ)根据对称性,只要证明函数)(xf的图象与直线xy在,0x上无交点即可。令,0x,函数xyxy221log ,当1,0x时,212100yyyy,则,当21211121)](22(yykykyNkxkkk,则,时,,则在,0x上直线xy始终在xy2log的图象之上方.综上所述,由于对称性可知,函数)(xf的图象与直线xy没有交点.
本文标题:高一数学对数运算及对数函数试题
链接地址:https://www.777doc.com/doc-1785584 .html