您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 4.2第一类换元积分法1
一.第一类换元积分法(凑微分法)二.第二类换元积分法4.2换元积分法问题xdx2cos,2sinCx解决方法根据函数的复合过程,设置中间变量.过程令xu2,21dudxxdx2cosduucos21Cusin21.2sin21Cx在基本积分公式中,自变量x换成任一可微函数后公式仍成立.这就大大扩大了基本积分公式的使用范围.)(xu已知cxxdxsincos凑微分法引入,2cos2)2(sinxxcxxdx2sin2cos1.积分形式的不变性:教学内容:第一类换元积分法CuFduuf)()(则cxFdxxf)()(若的函数为xu2.积分形式不变性下的基本积分公式:ckukducuduu111(1)cdx0(c为任意常数,以下同);(2)cudxuln1caadxauuln1cedxeuucuudusincoscuuducossincuudutansec2cuuducotcsc2cuuduusectanseccuuduucsccotcsccuduuarcsin112cudxuarctan112cudu3.积分形式不变性下的基本积分公式应用举例:)3()3(11)1(2xdxcx3arctandxx2)3(11)3(31xddx)3()3(11312xdxcx3arctan31cuduuarctan112)32()32()2(32xdxdxx32)32()32(31xddx)32()32(3132xdxcx35)32(51cuduu111cx35)32(53)1()3(212xdexcex12xdxex12)1(212xdxdx)1(21212xdexcex1221cedxeuu)1(1)4(22xdxcx232)1(32xdxx21)1(212xdxdx)1(12122xdxcx232)1(31cuduu111dxxxf)()]([duuf)()()]([xdxfCuF)(积分CxF))((回代计算过程为:用这种方法的计算程序是:先“凑”微分式,再作变量置换。我们将这类求不定积分的方法称为第一类换元积分法,也称凑微分法。凑微分)()(xddxxux)(令dxxxf)()]([凑微分)()]([xdxfCxF))(()()(xddxx求下列不定积分例1dxx11)1(ux1解:令dudx则duuxdx11Culn再将代回,得1xuCxxdx1ln1duu121cuxdx23)3(Cx23xu23dudx21dxx4)12(求解:ux12令dudx21则dxx4)12(Cxdxx54)12(101)12(Cu5101duu421注意:在对变量替换比较熟练后,可以不必写出新设的积分变量,而直接凑微分.例如:duu121xdx23xu23dudx21)23(21xddx)23(23121xdxxdx23凑微分culn21cx23ln214.常见凑微分)(1)1(baxdadxdxx32)1(求cx23)32(3221cuduu2332)32(___:?xddx因为解21dxx32,所以)32(3221xdxdxx211)1(12)2(xdxCx21ln21Cx12)21(21xddxcuduu21原型)12(12121xdxcuduuln1原型)12(21xddx)21(21121xdxdxx)2sin()(+53dxx2)53()4(cx3533151cx)52cos(21cuuducossin原型)52(21xddx)53(51xddxcuduu3231)53()53(512xdx)52()52sin(21xdxdxx2411)5(dxx2)2(11cx2arcsin21cuduuarcsin112)2(21xddx)2()2(11212xdx求下列不定积分dxxex2)1(Cex221dxxx21Cx)1ln(212dxxex2)1(解221dxxdx)1(112122xdx2221dxex)(2121)2(22baxdadxxdx)1(212xdxdx)3(212xdxdxdxxx23)2(Cx232)3(31)3(32122xdxcuduu2332232)3(xxdx)32(612xdxdxcuduu21cx23231)32(3216122xdx课堂练习求下列不定积分dxxx52)1()2(dxxax2)3(Cx62)1(121Caaxln22)4(412122xdxdxxx24)1(cx24221)(3132cxddxxxddxxln1xddxx112)(ceddxexxxddxx21xdxdxcossinxdxdxsincosxdxdxxsectansecxdxdxxcsccotcscxdxdxtansec2xdxdxcotcsc2xddxxarcsin112xddxxarctan112)(1baxdadx)(212cxdxdx常见的凑微分例.求下列不定积分dxxxln)1()(lnlnxxdCx2)(ln21dxxex21)2()1(1xdexCex1xddxxln1xddxx112dxeexx1)3()1(11xxedecex1ln)(beddxexxxdxxcossinxdxsinsinxdxtandxxxcossinxdxcoscos1cxcoslnxdxcotdxxxsincosxdxsinsin1cxsinlncx23)(sin32xdxtancxcoslnxdxcotcxsinlndxxxtan1cos12dxxxtan1sec2)tan1(tan11xdxcxtan12xdxx3sectanxdxxx2secsectanxdxsecsec2cx3sec31xdxdxxsectansec)(tansec2bxdxdxxdx2sindxx)2cos1(21cxx)2sin21(21dxx3sinxdxx2sinsinxdxcos)cos1(2cxx)cos31(cos3cuducxxdcoscosxdxxd2coscosxxxx2222sin211cos2sincos2cos)2cos1(21sin2xxdxxx221arctanxdxarctanarctan2cx3arctan31dxxx231arcsinxdxarcsinarcsin3cx34arcsin43思考题思考题dxxx2323sin求dxxx2323sin解:)23(2323sin21xdxx)23(23sinxdxCx23cosxddxx21dxx231xd23经济数学4.2换元积分法作业1.习题4教材P982单号题;3双号题2.补充题Cxxdxxfsin)(已知,求.)1(dxefexx
本文标题:4.2第一类换元积分法1
链接地址:https://www.777doc.com/doc-1797838 .html