您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2019年北京中考数学满分必刷100道压轴题归类(四)【圆综合题】(PDF-含答案)
12019年北京中考数学满分必刷100道压轴题圆综合题中考专项训练本文档试题为2017--2018年北京十三区一模、二模试题《圆综合题》汇编。21.2018届东城一模如图,AB为O的直径,点C,D在O上,且点C是BD的中点.过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是O的切线;(2)连接BC.若AB=5,BC=3,求线段AE的长.31.东城一模(1)证明:连接OC.∵CDCB∴∠1=∠3.∵OAOC,∴∠1=∠2.∴∠3=∠2.∴AEOC∥.∵AEEF⊥,∴OCEF⊥.∵OC是O的半径,∴EF是O的切线.----------------------2分(2)∵AB为O的直径,∴∠ACB=90°.根据勾股定理,由AB=5,BC=3,可求得AC=4.∵AEEF⊥,∴∠AEC=90°.∴△AEC∽△ACB.∴AEACACAB.∴445AE.∴165AE.----------------------5分42.西城一模.如图,⊙O的半径为r,ABC△内接于⊙O,15BAC,30ACB,D为CB延长线上一点,AD与⊙O相切,切点为A.(1)求点B到半径OC的距离(用含r的式子表示).(2)作DHOC于点H,求ADH的度数及CBCD的值.52.西城一模.【解析】(1)如图4,作BEOC于点E.∵在⊙O的内接ABC△中,15BAC,∴230BOCBAC.在RtBOE△中,90OEB,30BOE,OBr,∴22OBrBE,∴点B到半径OC的距离为2r.(2)如图4,连接OA.由BEOC,DHOC,可得BEDH∥.∵AD于⊙O相切,切点为A,∴ADOA,∴90OAD.∵DHOC于点H,∴90OHD.∵在OBC△中,OBOC,30BOC,∴180752BOCOCB.∵30ACB,∴45OCAOCBACB.∵OAOC,∴45OACOCE,∴180290AOCOCA,∴四边形AOHD为矩形,90ADH,∴DHAOr.∵2rBE,∴2DHBE.∵BEDH∥,∴CBECDH∽△△,∴12CBBECDDH.63.海淀一模.如图,AB是O的直径,弦EFAB于点C,过点F作O的切线交AB的延长线于点D.(1)已知A,求D的大小(用含的式子表示);(2)取BE的中点M,连接MF,请补全图形;若30A,7MF,求O的半径.73.海淀一模解:(1)连接OE,OF.∵EFAB⊥,AB是O的直径,∴DOFDOE∠∠.∵2DOEA∠∠,A∠,∴2DOF∠.………………1分∵FD为O的切线,∴OFFD⊥.∴90OFD∠.∴+90DDOF∠∠.902D.………………2分(2)图形如图所示.连接OM.∵AB为O的直径,∴O为AB中点,90AEB.∵M为BE的中点,∴OMAE∥,1=2OMAE.………………3分∵30A,∴30MOBA.∵260DOFA,∴90MOF.………………4分∴222+OMOFMF.设O的半径为r.∵90AEB,30A,∴cos303AEABr.∴1=32OMr.………………5分∵=7FM,∴2221(3)+(7)2rr.解得=2r.(舍去负根)∴O的半径为2.………………6分84.丰台一模.如图,A,B,C三点在⊙O上,直径BD平分∠ABC,过点D作DE∥AB交弦BC于点E,过点D作⊙O的切线交BC的延长线于点F.(1)求证:EFED;(2)如果半径为5,cos∠ABC=35,求DF的长.94.丰台一模.(1)证明:∵BD平分∠ABC,∴∠1=∠2.∵DE∥AB,∴∠2=∠3.∴∠1=∠3.∵BC是⊙O的切线,∴∠BDF=90°.∴∠1+∠F=90°,∠3+∠EDF=90°.∴∠F=∠EDF.∴EFDE.…….…….……………2分(2)解:连接CD.∵BD为⊙O的直径,∴∠BCD=90°.∵DE∥AB,∴∠DEF=∠ABC.∵cos∠ABC=35,∴在Rt△ECD中,cos∠DEC=CEDE=35.设CE=3x,则DE=5x.由(1)可知,BE=EF=5x.∴BF=10x,CF=2x.在Rt△CFD中,由勾股定理得DF=25x.∵半径为5,∴BD10.∵BF×DC=FD×BD,∴1041025xxx,解得52x.∴DF=25x=5.…….…….……………5分(其他证法或解法相应给分.)105.石景山一模.如图,AB是⊙O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交⊙O于点C,连接BC,过点D作FD⊥OC交⊙O的切线EF于点F.(1)求证:12CBEF;(2)若⊙O的半径是23,点D是OC中点,15CBE°,求线段EF的长.115.石景山一模.(1)证明:连接OE交DF于点H,∵EF是⊙O的切线,OE是⊙O的半径,∴OE⊥EF.∴190F°.∵FD⊥OC,∴3290.∵12,∴3F.………………1分∵132CBE,∴12CBEF.………………2分(2)解:∵15CBE°,∴3230FCBE°.∵⊙O的半径是23,点D是OC中点,∴3OD.在RtODH中,cos3ODOH,∴2OH.………………3分∴232HE.在RtFEH中,tanEHFEF.………………4分∴3623EFEH.………………5分126.朝阳一模.如图,在⊙O中,C,D分别为半径OB,弦AB的中点,连接CD并延长,交过点A的切线于点E.(1)求证:AE⊥CE.(2)若AE=,sin∠ADE=31,求⊙O半径的长.136.朝阳一模.(1)证明:连接OA,∵OA是⊙O的切线,∴∠OAE=90º.………………………………1分∵C,D分别为半径OB,弦AB的中点,∴CD为△AOB的中位线.∴CD∥OA.∴∠E=90º.∴AE⊥CE.…………………………………2分(2)解:连接OD,∴∠ODB=90º.……………………………………………………3分∵AE=,sin∠ADE=31,在Rt△AED中,23sinADEAEAD.∵CD∥OA,∴∠1=∠ADE.在Rt△OAD中,311sinOAOD.…………………………………4分设OD=x,则OA=3x,∵222OAADOD,∴222323xx.解得231x,232x(舍).∴293xOA.……………………………………………5分即⊙O的半径长为29.147.燕山一模.如图,在△ABC中,AB=AC,AE是BC边上的高线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB为⊙O的直径.(1)求证:AM是⊙O的切线(2)当BE=3,cosC=52时,求⊙O的半径.157.燕山一模.解:(1)连结OM.∵BM平分∠ABC∴∠1=∠2又OM=OB∴∠2=∠3∴OM∥BC…………………………………2′AE是BC边上的高线∴AE⊥BC,∴AM⊥OM∴AM是⊙O的切线…………………………………3′(2)∵AB=AC∴∠ABC=∠CAE⊥BC,∴E是BC中点∴EC=BE=3∵cosC=52=ACEC∴AC=25EC=215…………………………………4′∵OM∥BC,∠AOM=∠ABE∴△AOM∽△ABE∴ABAOBEOM又∠ABC=∠C∴∠AOM=∠C在Rt△AOM中cos∠AOM=cosC=5252AOOM∴AO=OM25AB=OM25+OB=OM27而AB=AC=215168.门头沟一模.如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=35,请求出AC的长.178.门头沟一模.(1)证明:连接OC,∵射线DC切⊙O于点C,∴∠OCP=90°∵DE⊥AP,∴∠DEP=90°∴∠P+∠D=90°,∠P+∠COB=90°∴∠COB=∠D…………………1分∵OA=OC,∴∠A=∠OCA∵∠COB=∠A+∠OCA∴∠COB=2∠A∴∠D=2∠A…………………2分(2)解:由(1)可知:∠OCP=90°,∠COP=∠D,∴cos∠COP=cos∠D=35,…………………3分∵CH⊥OP,∴∠CHO=90°,设⊙O的半径为r,则OH=r﹣2.在Rt△CHO中,cos∠HOC=OHOC=2rr=35,∴r=5,…………………4分∴OH=5﹣2=3,∴由勾股定理可知:CH=4,∴AH=AB﹣HB=10﹣2=8.在Rt△AHC中,∠CHA=90°,∴由勾股定理可知:AC=45.…………………5分189.大兴一模.已知:如图,在△OAB中,OAOB,⊙O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接ECCD,.(1)试判断AB与⊙O的位置关系,并加以证明;(2)若1tan2E,⊙O的半径为3,求OA的长.19ABCDEO9.大兴一模.(1)AB与⊙O的位置关系是相切·····················································1分证明:如图,连接OC.OAOB,C为AB的中点,OCAB.∴AB是⊙O的切线.·············································································2分(2)ED是直径,90ECD.∴90EODC.又90BCDOCD,OCDODC,∴BCDE.又CBDEBC,∴BCDBEC△∽△.BCBDBEBC.∴2BCBDBE.················································································3分1tan2E,∴12CDEC.BCDBEC△∽△,∴12BDCDBCEC.·················································································4分设BDx,则2BCx.又2BCBDBE,∴2(2)(6)xxx.解得10x,22x.0BDx,∴2BD.235OAOBBDOD.····························································5分2010.平谷一模.如图,以AB为直径作⊙O,过点A作⊙O的切线AC,连结BC,交⊙O于点D,点E是BC边的中点,连结AE.(1)求证:∠AEB=2∠C;(2)若AB=6,3cos5B,求DE的长.2110.平谷一模.(1)证明:∵AC是⊙O的切线,∴∠BAC=90°.······································································1∵点E是BC边的中点,∴AE=EC.∴∠C=∠EAC,·······································································2∵∠AEB=∠C+∠EAC,∴∠AEB=2∠C.·····································································3(2)解:连结AD.∵AB为直径作⊙O,∴∠ABD=90°.∵AB=6,3cos5B,∴BD=185.·························4在Rt△ABC中,AB=6,3c
本文标题:2019年北京中考数学满分必刷100道压轴题归类(四)【圆综合题】(PDF-含答案)
链接地址:https://www.777doc.com/doc-1801172 .html