您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 人事档案/员工关系 > 浙江省湖州市2016-2017学年高一(上)期末数学试卷(解析版)
2016-2017学年浙江省湖州市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.tan等于()A.﹣1B.1C.﹣D.2.函数y=ax+1(a>0,a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(0,2)D.(2,1)3.下列函数中,是偶函数且在区间(0,+∞)上是减函数()A.y=B.y=x2C.y=()xD.y=4.将函数y=sin(x﹣)图象上所有的点(),可以得到函数y=sin(x+)的图象.A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位5.设a=(),b=(),c=(),则()A.a<b<cB.c<a<bC.b<c<aD.b<a<c6.定义在R上的奇函数f(x)满足在(﹣∞,0)上为增函数且f(﹣1)=0,则不等式x•f(x)>0的解集为()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣1,0)∪(0,1)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)7.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣B.2,﹣C.4,﹣D.4,﹣8.如图,I为全集,M、P、S是I的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩SB.(M∩P)∪SC.(M∩P)∩CISD.(M∩P)∪CIS9.在平面直角坐标系中,如果不同的两点A(a,b),B(﹣a,b)同时在函数y=f(x)的图象上,则称(A,B)是函数y=f(x)的一组关于y轴的对称点((A,B)与(B,A)视为同一组),在此定义下函数f(x)=(e=2.71828…,为自然数的底数)图象上关于y轴的对称点组数是()A.0B.1C.2D.410.已知函数f(x)=cos(ωx+φ)(ω>0),x=﹣是y=f(x)的零点,直线x=为y=f(x)图象的一条对称轴,且函数f(x)在区间(,)上单调,则ω的最大值是()A.9B.7C.5D.3二、填空题(共7小题,多空题6分,单空题第题4分,满分36分)11.若幂函数f(x)=xa(a∈R)的图象过点(2,),则a的值是,函数f(x)的递增区间是.12.在半径为6cm的圆中,某扇形的弧所对的圆心角为,则该扇形的周长是cm,该扇形的面积是cm2.13.已知函数f(x)=,且f(a)=3,则f(2)的值是,实数a的值是.14.若tan()=2,则tan()的值是,2sin2α﹣cos2α的值是.15.若函数f(x)=x2﹣2|x|+m有两个相异零点,则实数m的取值范围是.16.给出下列叙述:①若α,β均为第一象限,且α>β,则sinα>sinβ②函数f(x)=sin(2x﹣)在区间[0,]上是增函数;③函数f(x)=cos(2x+)的一个对称中心为(﹣,0)④记min{a,b}=,若函数f(x)=min{sinx,cosx},则f(x)的值域为[﹣1,].其是叙述正确的是(请填上序号).17.定义在R上的函数f(x)=2ax+b,其中实数a,b∈(0,+∞),若对做任意的x∈[﹣,],不等式|f(x)|≤2恒成立,则当a•b最大时,f(2017)的值是.三、解答题(共5小题,满分74分)18.(14分)已知集合A={x|3≤3x≤27},B={x|log2x>1}.(Ⅰ)求A∩B,A∪B;(Ⅱ)已知非空集合C={x|1<x≤a},若C⊆A,求实数a的取值范围.19.(15分)已知函数f(x)=6x2+x﹣1.(Ⅰ)求f(x)的零点;(Ⅱ)若α为锐角,且sinα是f(x)的零点.(ⅰ)求的值;(ⅱ)求的值.20.(15分)设定义域为R的奇函数(a为实数).(Ⅰ)求a的值;(Ⅱ)判断f(x)的单调性(不必证明),并求出f(x)的值域;(Ⅲ)若对任意的x∈[1,4],不等式f(k﹣)+f(2﹣x)>0恒成立,求实数k的取值范围.21.(15分)已知函数.(Ⅰ)求的值;(Ⅱ)求f(x)图象的对称轴方程;(Ⅲ)求f(x)在上的最大值与最小值.22.(15分)已知函数.(Ⅰ)当m=8时,求f(﹣4)的值;(Ⅱ)当m=8且x∈[﹣8,8]时,求|f(x)|的最大值;(Ⅲ)对任意的实数m∈[0,2],都存在一个最大的正数K(m),使得当x∈[0,K(m)]时,不等式|f(x)|≤2恒成立,求K(m)的最大值以及此时相应的m的值.2016-2017学年浙江省湖州市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.tan等于()A.﹣1B.1C.﹣D.【考点】三角函数的化简求值.【分析】根据特殊三角函数值直接计算.【解答】解:由,故选B【点评】本题考查了特殊三角函数值的计算.比较基础.2.函数y=ax+1(a>0,a≠1)的图象必经过点()A.(0,1)B.(1,0)C.(0,2)D.(2,1)【考点】指数函数的单调性与特殊点.【分析】由指数函数的图象恒过定点(0,1),再结合函数图象的平移得答案.【解答】解:∵函数y=ax的图象过点(0,1),而函数y=ax+1的图象是把函数y=ax的图象向上平移1个单位,∴函数y=ax+1的图象必经过的点(0,2).故选C.【点评】本题考查指数函数的图象变换,考查指数函数的性质,是基础题.3.下列函数中,是偶函数且在区间(0,+∞)上是减函数()A.y=B.y=x2C.y=()xD.y=【考点】奇偶性与单调性的综合.【分析】根据题意,依次分析选项可得:对于A、y=是奇函数,不符合题意;对于B、y=x2在区间(0,+∞)上是增函数,不符合题意;对于C、y=()x不具有奇偶性,不符合题意;对于D、y=是幂函数,符合题意;即可得答案.【解答】解:根据题意,依次分析选项:对于A、y=是奇函数,不符合题意;对于B、y=x2是偶函数,但在区间(0,+∞)上是增函数,不符合题意;对于C、y=()x是指数函数,不具有奇偶性,不符合题意;对于D、y=是幂函数,是偶函数且在区间(0,+∞)上是减函数,符合题意;故选:D.【点评】本题考查函数的奇偶性与单调性的判定,注意要掌握常见函数的奇偶性与单调性.4.将函数y=sin(x﹣)图象上所有的点(),可以得到函数y=sin(x+)的图象.A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】直接根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:∵y=sin(x+)=sin[(x+)﹣],∴将函数y=sin(x﹣)图象上所有的点向左平移单位,可以得到函数y=sin(x+)的图象.故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象变换规律,属于基础题.5.设a=(),b=(),c=(),则()A.a<b<cB.c<a<bC.b<c<aD.b<a<c【考点】指数函数的单调性与特殊点.【分析】利用幂函数y=x,单调递增,指数函数y=()x,单调递减,即可得出结论.【解答】解:考查幂函数y=x,单调递增,∵,∴a>b,考查指数函数y=()x,单调递减,∵,∴c>a,故选D.【点评】本题考查幂函数、指数函数的单调性,考查学生的计算能力,比较基础.6.定义在R上的奇函数f(x)满足在(﹣∞,0)上为增函数且f(﹣1)=0,则不等式x•f(x)>0的解集为()A.(﹣∞,﹣1)∪(1,+∞)B.(﹣1,0)∪(0,1)C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(0,1)【考点】奇偶性与单调性的综合.【分析】根据题意,由函数f(x)的奇偶性和单调性,画出函数f(x)的草图,又由x•f(x)>0⇔或,结合函数的图象分析可得答案.【解答】解:根据题意,f(x)为奇函数且在(﹣∞,0)上为增函数,则f(x)在(0,+∞)上也是增函数,若f(﹣1)=0,得f(﹣1)=﹣f(1)=0,即f(1)=0,作出f(x)的草图,如图所示:对于不等式x•f(x)>0,有x•f(x)>0⇔或,分析可得x<﹣1或x>1,即x∈(﹣∞,﹣1)∪(1,+∞);故选:A.【点评】本题函数的奇偶性与单调性的应用,涉及不等式的解法,利用函数的奇偶性和单调性之间的关系是解决本题的关键,利用数形结合进行求解比较容易.7.函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A.2,﹣B.2,﹣C.4,﹣D.4,﹣【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据图象的两个点A、B的横坐标,得到四分之三个周期的值,得到周期的值,做出ω的值,把图象所过的一个点的坐标代入方程做出初相,写出解析式,代入数值得到结果.【解答】解:由图象可得:=﹣(﹣)=,∴T==π,∴ω=2,又由函数f(x)的图象经过(,2),∴2=2sin(2×+φ),∴+φ=2kπ+,(k∈Z),即φ=2kπ﹣,k∈Z,又由﹣<φ<,则φ=﹣.故选:B.【点评】本题考查有部分图象确定函数的解析式,本题解题的关键是确定初相的值,这里利用代入点的坐标求出初相,属于基础题.8.如图,I为全集,M、P、S是I的三个子集,则阴影部分所表示的集合是()A.(M∩P)∩SB.(M∩P)∪SC.(M∩P)∩CISD.(M∩P)∪CIS【考点】Venn图表达集合的关系及运算.【分析】先根据图中的阴影部分是M∩P的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【解答】解:图中的阴影部分是:M∩P的子集,不属于集合S,属于集合S的补集即是CIS的子集则阴影部分所表示的集合是(M∩P)∩∁IS故选:C.【点评】本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力,属于基础题.9.在平面直角坐标系中,如果不同的两点A(a,b),B(﹣a,b)同时在函数y=f(x)的图象上,则称(A,B)是函数y=f(x)的一组关于y轴的对称点((A,B)与(B,A)视为同一组),在此定义下函数f(x)=(e=2.71828…,为自然数的底数)图象上关于y轴的对称点组数是()A.0B.1C.2D.4【考点】分段函数的应用.【分析】根据定义,可知函数f(x)关于y轴的对称点的组数,就是图象交点的个数.【解答】解:由题意,在同一坐标系内,作出y=e﹣x,x≤0,y=|lnx|(x>0)的图象,根据定义,可知函数f(x)=关于y轴的对称点的组数,就是图象交点的个数,所以关于y轴的对称点的组数为2个,故选:C【点评】本题主要考查函数的交点问题,利用定义先求出函数关于y轴对称的函数,是解决本题的关键.10.已知函数f(x)=cos(ωx+φ)(ω>0),x=﹣是y=f(x)的零点,直线x=为y=f(x)图象的一条对称轴,且函数f(x)在区间(,)上单调,则ω的最大值是()A.9B.7C.5D.3【考点】余弦函数的对称性.【分析】根据已知可得ω为正奇数,且ω≤8,结合条件进行验证,可得ω的最大值.【解答】解:∵x=﹣是y=f(x)的零点,直线x=为y=f(x)图象的一条对称轴,∴=,(n∈N)即ω==2n+1,(n∈N)即ω为正奇数,∵函数f(x)在区间(,)上单调,∴﹣=≤即T=,解得:ω≤8,当ω=7时,﹣+φ=kπ+,k∈Z,取φ=,此时f(x)在(,)不单调,不满足题意;当ω=5时,﹣+φ=kπ+,k∈Z,取φ=,此时f(x)在(,)不单调,满足题意;当ω=3时,﹣+φ=kπ+,k∈Z,取φ=﹣,此时f(x)在(,)单调,满足题意;故ω的最大值为3,故选:D.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题(共7小题,多空题6分,单空题第题4分,满分36分)11.若幂函数f(x)=xa(a∈R)的图象过点(2,),则a的值是,函数f(x)的递增区间是[0,+∞).【考点】幂函数的概念、解析式、定义域、值域.【分析】利用待定系数法求出a的值,写出函数f(x)的解析式,再得出f(x)的递增区间.【解答】解:幂函数f(x)=xa(a∈R)的图象过点(2,),则2a=,解得a=;所以函数f(x)==,所以f(x)的递增区间是
本文标题:浙江省湖州市2016-2017学年高一(上)期末数学试卷(解析版)
链接地址:https://www.777doc.com/doc-1822074 .html