您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 自动控制原理(黄家英)第二版课后答案-2
第二章部分习题及解答B2.2 求下列函数的拉氏反变换:2)(s1)(ss(4)F(s)20te2e2te)t(f2s21s2)1s(1)2s()1s(s)s(F)4(t2tt22解:B2.4在图B2.4所示的电路中电压u1(t)为输入量,试以电压u2(t)或uC2(t)作为输出量,分别列写该系统的微分方程。图B2.4电路原理图1s)CRTT(sTT)s(U]1s)TT(sTT[)sC1R(sC1RsC1RsC1R)s(U)s(Uu4.2B212122112122122221111122复阻抗法:作为输出,应用网络的解:1121121222121221222111uu)TT(uTTuu)CRTT(uTTCRT,CRT其中:2c221111212c2211112112cU)sC1RR1sC1)R1sC1R(1)(s(UU)sC1RR1sC1)R1sC1R()(s(U)s(Uu复阻抗法:作为输出,应用网络的1s)RCCRCR(sCCRR1sRC)s(U)s(U112221221211111c1s)RCCRCR(sCCRR1sRC)s(U)s(U112221221211111c11111c1c1122211c2121uuRCuu)RCCRCR(uCCRRB2.8设系统的微分方程为试用拉氏变换法进行求解。s66Y(s)5y(0)-5sY(s)y(0))(0)y(s-Y(s)s8.2B2进行拉氏变换解:s6s5s6s12s2Y(s)232代入初值整理s12s53s4Y(s)部分分式展开0t,1e5e4)t(yt2t3B2.9已知控制系统的微分方程(或微分方程组)为式中r(t)为输入量,y(t)为输出量,z1(t)、z2(t)和z3(t)为中间变量,τ、β、K1和K2均为常数。试求:(a)各系统的传递函数Y(s)/R(s);(b)各系统含有哪些典型环节?0.5698)0.2451s(s1.755)(ss1ss2sss11s2s1)s(G)2(9.2B2232解:惯性、振荡构成。由比例、理想微分环节构成。比例、两个惯性、延迟解:0.5279)+(s9.472)+(se5s10se)s(G)3(9.2Bs2sB2.12已知控制系统在零初始条件下,由单位阶跃输入信号所产生的输出响应为y(t)=1+e-t-2e-2t试求该系统的传递函数,和零极点的分布并画出在S平面上的分布图。B2.12解:因为在r(t)=1(t)下系统的输出y(t)=1+e-t-2e-2t1)+(s2)+(s0.6667)+(s32+s3+s2+s3s1s2+s3+s2+s3)s(Gs2+s3+s2+s32s21s1s1)s(Ys1(s)R22323对上式求拉氏变换j0-1-2B2.15已知控制系统的结构图如图B2.15所示,试应用结构图等效变换法求各系统的传递函数。B2.15解:R(s)G1(s)G2(s)G2(s)H(s)Y(s)R(s)G1(s)G2(s)HG2(s)Y(s)-221HG1GG(s)GB2.17求图B2.17所示闭环控制系统的传递函数Φ(s)=Y(s)/R(s)和Φe(s)=E(s)/R(s)。,HGGHGL,HHGLHGGGL,HGGGGGL,HGGGGGGL,HGGGL,HGL,HGL,HGL4n,p1T:B2.1756817941885681756543765654321545434363242121n1kkk这里解:由梅森公式)HG1)(GGHGGGG(GGGGGGGGGGG)s(R/)s(C24681768165437654321244681742436813265437216543211HG1,GGHGP,HG1,GGGP1,GGGGGP,1,GGGGGGP36241224568124568174182436243612241256817418568156543756543214543362412HGHGHGHGHGGGHGHGGHGHHGHGHGHGHGHGHGHGHGGHGHHGHGGGHGGGGGHGGGGGGHGGGHGHGHG1B2.18已知控制系统的结构图,如图B2.18所示。要求:(1)分别应用结构图等效变换法和梅森公式求各闭环系统的传递函数Y(s)/R(s)和E(s)/R(s);(2)欲使图B2.18(a)系统的输出Y(s)不受扰动D(s)的影响,试问其条件是什么?B2.18解:G1G1H1G2--G5H2DG3G4-H3REY求各闭环系统的传递函数Y(s)/R(s)和E(s)/R(s)G1G1H1G2G2--G5H2D(s)G3G4-H3REYG1-G5H2G2G3G4-H3REY121HGG11G1-H2G2G3G4-H3REY121HGG11325GGGG1-H2G2G3-H3REY121HGG114325GGGGG1-H2G2G3-H3REY121HGG114325GGGGG1-H3REY21213212132HHGG1GG1HGG1GG4325GGGG34321351232121432151HGGGGHGGHGGHGG1GGGGGGRY34321351232121432151HGGGGHGGHGGHGG1GGGGGG)s(R)s(Y34321351232121232121HGGGGHGGHGGHGG1HGGHGG1)s(R)s(E(2)欲使图B2.18(a)系统的输出Y(s)不受扰动D(s)的影响343213512321212531432143HGGGGHGGHGGHGG1HGGHGGGGGG)s(D)s(Y343213512321212531432143HGGGGHGGHGGHGG1HGGHGGGGGG)s(D)s(Y的影响。,即不受可使可见,只要满足)s(D0)s(Y0HGGHGGGGGG2531432143B2.23已知控制系统的状态变量图,如图B2.23所示。要求:(1)确定状态变量并列写系统的状态空间表达式;(2)求系统的闭环传递函数。变量为状态变量)解:取积分器的输出(1B2.23x3x2x1r)xx2(xx2xx5xxxxx2132323322121xx2yr5.0x5.0xxr5.0xx5.3xxxx23122132r5.0xx5.3xy321r5.0X]15.31[yr5.05.00X05.1115.31010X2+s-s7+2s2+2s+s+s1+s0.5-s3.5+s1+s+s0.5+s0.523232323闭环传递函数为2ss7s22s2sss2ss721ss2s2PPPP)s(U)s(Ys1sP1Ps2Ps2Ps2ss72s5)s1s2s2s2s2s5s(1LLL122323321123443322114,1i,i142233132121132211ji41ii)(则:)根据梅森公式:(B2.25已知系统的状态方程如下所列,试求该系统的输入输出微分方程:u6y7y41y6yu6y6y41y7xyxxyxxyxyxyu6x6x41x7xxxxxB2.25332211132133221方程为:故系统的输入输出微分于是下列标量微分方程组:由状态空间表达式可得解:B2.27已知控制系统的传递函数如下所示,试用直接分解法求系统的状态空间表达式:X]0010[yU100X10510100010X10s5s10s10)s(G1B2.2723)解:(3432135123212123212134321351232121432151221s2s2232t2t311111c1c1122211c21211121121222121221222111t2ttHGGGGHGGHGGHGG1HGGHGG1)s(R)s(EHGGGGHGGHGGHGG1GGGGGG)s(R)s(YB2.18HG1GG(s)GB2.151)+(s2)+(s0.6667)+(s3B2.120.5279)+(s9.472)+(se5s10se)s(G)3(9.2B0.5698)0.2451s(s1.755)(ss1ss2sss11s2s1)s(G)2(9.2B0t,1e5e4)t(y8.2BuuRCuu)RCCRCR(uCCRRuu)TT(uTTuu)CRTT(uTTCRT,CRT4.2B0te2e2te)t(f)4(2.2B环节构成。比例、两个惯性、延迟解:解:解其中:解:u6y7y41y6y25.2B的影响。,即不受可使只要满足)s(D0)s(Y0HGGHGGGGGG2531432143
本文标题:自动控制原理(黄家英)第二版课后答案-2
链接地址:https://www.777doc.com/doc-1823139 .html