您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 九年级数学下册-相似三角形-单元测试题
相似三角形单元测试题一、选择题:1.下列说法中正确的是()A.两个平行四边形一定相似B.两个菱形一定相似C.两个矩形一定相似D.两个等腰直角三角形一定相似2.在相同时刻的物高与影长成比例,如果高为1.5米的测竿的影长为2.5米,那么影长为30米的旗杆的高是()A.20米B.18米C.16米D.15米3.如图,DE∥BC,分别交△ABC的边AB,AC于点D,E,=,若AE=5,则EC长度为()A.10B.15C.20D.254.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)5.△ABC的三边长分别为2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()6.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.17.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个8.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.9.如图,△ABC中,D、E两点分别在BC、AD上,且AD平分∠BAC,若∠ABE=∠C,AD:ED=3:1,则△BDE与△ADC的面积比为()A.16:45B.2:9C.1:9D.1:310..如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴,y轴的正半轴上,正方形A/B/C/D/与正方形ABCD是以AC的中点O/为中心的位似图形,已知AC=3,若点A/的坐标为(1,2),则正方形A/B/C/D/与正方形ABCD的相似比是()A.B.C.D.11.如图,在矩形ABCD中,AB=10,BC=5.若点M、N分别是线段AC,B上的两个动点,则BM+MN最小值为()A.10B.8C.5D.612.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°α60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.二、填空题:13.下面各组中的两个图形,是形状相同的图形,是形状不同的图形.14.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则AH:CH的值为.15.如图,线段AB的两个端点坐标分别为A(1,1),B(2,1),以原点O为位似中心,将线段AB放大后得到线段CD,若CD=2,则端点C的坐标为.16.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为.17.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=0.75,则矩形ABCD的周长为18.如图,在△ABC中,AB=AC=10,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=0.75,有以下的结论:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE为直角三角形时,BD为8或3.5;④0<BE≤5.其中正确的结论是(填入正确结论的序号)三、解答题:19.如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别为A(-1,2),B(-3,4)C(-2,6)(1)画出△ABC绕点A顺时针旋转90°后得到的△A1B1C1(2)以原点O为位似中心,画出将△A1B1C1三条边放大为原来的2倍后的△A2B2C2.20.如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BCD∽△ACB;(2)如果BC=,AC=3,求CD的长.21.已知在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.连接BD,AE⊥BD垂足为E.(1)求证:△ABE∽△DBC;(2)求线段AE的长.22.如图,已知△ABC中,AB>AC,BC=6,BC边上的高AN=4.直角梯形DEFG的底EF在BC边上,EF=4,点D、G分别在边AB、AC上,且DG∥EF,GF⊥EF,垂足为F.设GF的长为x,直角梯形DEFG的面积为y,求y关于x的函数关系式,并写出x的取值范围.23.如图F为平行四边形ABCD的AD延长线上一点,BF分别交CD、AC于G、E,若EF=32,GE=8,求BE.24.(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5,点P以每秒1个单位长度的速度,由点A出了,沿边AB向点B运动,且满足∠DPC=∠A,设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切时,求t的值.参考答案1.D2.B3.A4.B5.C6.B7.C8.B9.B10.B11.B【解答】解:过B点作AC的垂线,使AC两边的线段相等,到E点,过E作EF垂直AB交AB于F点,AC=5,AC边上的高为2,所以BE=4.∵△ABC∽△EFB,∴=,即=,EF=8.故选B.12.C13.略14.答案为:.15.(2,1)16.答案为:3.17.答案为:36;18.解:①∵AB=AC,∴∠B=∠C,又∵∠ADE=∠B∴∠ADC=180°﹣α﹣∠BDE,∵∠BED=180°﹣α﹣∠BDE,∴∠BED=∠ADC∴△DBE∽△ACD,故①正确;②∵∠B=∠C,∴∠C=∠ADE,不能得到△ADE∽△ACD;故②错误,③当∠AED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠AED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且cosα=0.8,AB=10,BD=8.当∠BDE=90°时,易△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠B=α且cosα=0.8.AB=10,∴cosC=0.8,∴CD=12.5,∴BD=BC﹣CD=3.5;故③正确.④过A作AG⊥BC于G,∵cosα=0.8,∴BG=8,∴BC=16,易证得△BDE∽△CAD,设BD=y,BE=x,∴=,∴=,整理得:y2﹣16y+64=64﹣10x,即(y﹣8)2=64﹣10x,∴0<x≤6.4.故④错误.故答案为:①③.19.【解答】解:如图:(1)△A1B1C1即为所求;(2)△A2B2C2即为所求.20.【解答】(1)证明:∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB;(2)解:∵△BCD∽△ACB,∴=,∴=,∴CD=2.21.【解答】(1)证明:∵AB=AD=25,∴∠ABD=∠ADB,∵AD∥BC,∴∠ADB=∠DBC,∴∠ABD=∠DBC,∵AE⊥BD,∴∠AEB=∠C=90°,∴△ABE∽△DBC;(2)解:∵AB=AD,又AE⊥BD,∴BE=DE,∴BD=2BE,由△ABE∽△DBC,得,∵AB=AD=25,BC=32,∴,∴BE=20,∴AE=25.22.y关于x的函数关系式为:y═﹣3/4x2+5x(0<x<4).23.24.
本文标题:九年级数学下册-相似三角形-单元测试题
链接地址:https://www.777doc.com/doc-1861190 .html