您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小学四年级经典奥数题图形计数
学员姓名:年级:四年级吧课时数:2小时辅导类型:拔高型辅导科目:数学学科教师:课题奥数题授课时间教材区域小四数学(下册)学习目标1、图形的计数问题;2、几何图形计数问题往往没有显而易见的顺序,而且要数的对象通常是重叠交错的,要准确计数就需要一些智慧了.图形计数问题,通常采用一种简单原始的计数方法-一枚举法.具体而言,它是指把所要计数的对象一一列举出来,以保证枚举时无一重复、无一遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养思维的有序性和良好的学习习惯。学员授课过程一、典例剖析:例(1)数出右图中总共有多少个角分析:在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个角。练一练:数一数右图中总共有多少个角?例(2)数一数共有多少条线段?共有多少个三角形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三角形,先看在△AGH中,在GH上有3个分点,分成基本小三角形有4个.所以在△AGH中共有三角形4+3+2+1=10(个).在△AMN与△ABC中,三角形有同样的个数,所以在△ABC中三角形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三角形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三角形30个。练一练:共有多少个三角形?例(3)数一数图中长方形的个数分析:AB边上分成的线段有:5+4+3+2+1=15.BC边上分成的线段有:3+2+1=6.解:共有长方形:(5+4+3+2+1)×(3+2+1)=15×6=90(个)答:共有长方形90个。练一练:数一数图中长方形的个数例(4)数一数图中有多少个正方形(其中每个小方格都是边长为1个长度单位的正方形).分析:为叙述方便,我们规定最小正方形的边长为1个长度单位,又称为基本线段,图中共有五类正方形.①以一条基本线段为边的正方形个数共有:6×5=30(个).②以二条基本线段为边的正方形个数共有:5×4=20(个).③以三条基本线段为边的正方形个数共有:4×3=12(个).④以四条基本线段为边的正方形个数共有:3×2=6(个).⑤以五条基本线段为边的正方形个数共有:CDAB2×1=2(个).解:正方形总数为:6×5+5×4+4×3+3×2+2×1=30+20+12+6+2=70(个)练一练:下图共有几个正方形?例(5)数一数图中三角形的个数分析:这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.Ⅰ.以一条基本线段为边的三角形:①尖朝上的三角形共有四层,它们的总数为:W①上=1+2+3+4=10(个).②尖朝下的三角形共有三层,它们的总数为:W①下=1+2+3=6(个).Ⅱ.以两条基本线段为边的三角形:①尖朝上的三角形共有三层,它们的总数为:W②上=1+2+3=6(个).②尖朝下的三角形只有一个,记为W②下=1(个).Ⅲ.以三条基本线段为边的三角形:①尖朝上的三角形共有二层,它们的总数为:aaW③上=1+2=3(个).②尖朝下的三角形零个,记为W③下=0(个).Ⅳ.以四条基本线段为边的三角形,只有一个,记为:W④上=1(个).解:所以三角形的总数是10+6+6+1+3+1=27(个).练一练:数一数图中三角形的个数例(6)(1)图1-67中一共有多少个长方形?(2)所有这些长方形的面积和是多少?解(1)图中长的一边有5个分点(包括端点),所以,长的一边上不同的线段共有1+2+3+4=10(条).同样,宽的一边上不同的线段也有10条.所以,共有长方形10×10=100(个).(2)因为长的一边上的10条线段长分别为5,17,25,26,12,20,21,8,9,1,宽的一边上的10条线段长分别为2,6,13,16,4,11,14,7,10,3.所以,所有长方形面积和为(5×2+5×6+…+5×3)+(17×2+17×6+…+17×3)+…+(1×2+1×6+…+1×3)=(5+17+…+1)×(2+6+…+3)=144×86=12384.例(7)右图是由小立方体码放起来的,其中有一些小方体看不见.图中共有_____个小立方体.例(8)在三角形中,任意两边和大于第三边,任意两边差小于第三边。例(8-1)把一条长15cm的线段截为三段,使每条线段的长度是整数,用这三条线段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等时,我们称这两个三角形是相同的.)例(8-2).有一批长度分别为1,2,3,4,5,6,7,8,9,10和11厘米的细木条,它们的数量都足够多,从中适当选取3根木条作为三条边.可围成一个三角形,如果规定底边是11厘米长,你能围成多少个不同的三角形?课后习题:1、一条直线上共有50个点,可以数出()条线段.2、下图中各有()个三角形.3、数一数下图有()个长方形.4、右图一共有()个正方形?5、下图共有()个平行四边形.6、下图共有()个三角形.BACD7、下图共有几个正方形?8、下图中一共有多少个三角形?9、下图共有几个三角形?.10.如下图,一个三角形分成36个小三角形.把每个小三角形涂上红色或蓝色,两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色的三角形多,那么多_____个.
本文标题:小学四年级经典奥数题图形计数
链接地址:https://www.777doc.com/doc-1883464 .html