您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 工程结构可靠性理论与应用(习题及答案)
1《工程结构可靠性理论与应用》习题4.1某地区年最大风压实测值见教材表3-3。(1)用K-S检验法对年最大风压分布进行假设检验,证明该地区年最大风压可用极值I型来拟合,并写出相应的分布函数;(2)试求该地区设计基准期T=50年的最大风压的统计特征(统计参数和分布函数)。解:(1)列出年最大风压实测值表,见表1。表1某地年最大标准风压(kgf/m2)实测值(25年)年份195119521953195419551956195719581959风压11.1413.8114.3143.6732.2937.4421.4221.4223.96年份196019611962196319641965196619671968风压22.2531.4421.8319.8016.0414.8213.8120.4220.20年份1969197019711972197319741975风压19.8011.8919.8016.0412.677.9810.12(2)对荷载进行统计分析,依据该地区25年实测最大风压力绘制计统计频率分布直方图,为偏态,所以初步判断年最大风压力服从极值I型分布,试用极值I型分布拟合。已知极值I型分布函数()expexpIxFxa(3)参数估计子样平均数:)(2512521XXXX=1(11.1413.8110.12)19.9325子样标准差:12222111.1419.9913.8119.9910.1219.998.6224〔()()()〕=在)(XM,)(X,未知情况下,分别用上述估计值)(ˆxM=19.93、)(ˆX=8.62来近似代替,计算未知参数ua,的估计值。()0.5772Mxaax2826.1)(ˆ()8.621ˆ1.28261.28260.15Xa=1ˆ垐()0.577219.930.577216.080.15MXa于是可以得到该地区年最大风压可以用1()expexp0.15(16.08)Fxx来拟合。2(4)假设检验假设H0:该地区年最大风压服从极值I型分布,即其分布函数为()expexp0.15(16.08)IFxx其中15.01a,16.08。2)将X的经验分布函数)(xFn(统计量)与假设的X的分布函数)(xF进行比较,使用统计量nnn()()()maxmaxxxDFxFxDx,其中nn()()()DxFxFx=,来度量抽得的子样与要检验的假设之间的差异,数量大就表示差异大。为便于计算nD的观测值nD,列表计算n()Dx。见表2。表2子样检验差异表风压值ix频数iv累计频数iv假设分布值)(ixF经验分布值n()iFxn()iDx7.98110.03440.040.005610.12120.08670.080.006711.14130.12270.120.002711.89140.15340.160.006612.67150.18870.200.011313.81270.24520.280.034814.31180.27140.320.048614.82190.29880.360.061216.042110.36570.440.074319.84150.56420.600.035820.21160.58330.640.056720.41170.59270.680.087321.421180.63830.720.081721.831190.65570.760.104322.251200.67280.800.127223.691210.72660.840.113431.441220.90500.880.0250335.291230.94550.920.025537.441240.96020.960.000243.671250.98421.000.0158表中()expexp0.15(16.08)iFxxn1()()iiFxvnnn()()()iiDxFxFx=从表2可见:nn1()()maxiiinDFxFx0.12723)给显著水平05.0a,求出临界值n,0.05D。当n足够大时,我们可以认为nnD的分布近似于)(Q。给定05.0a,临界值n,0.05D即满足nn,0.05()0.05PnDDnn,0.05n,0.05()0.95()PnDDQD查教材附表Ⅲn,0.05D=1.36nnD=0.645n,0.05D=1.36,故接受H0,即认为该地区年最大风压服从极值I型分布,其分布函数为:()expexp0.15(16.08)IFxx15.01a,16.08u(5)求该地区设计基准期T=50年,最大风压的统计特征值。不考虑风向时:50KKWTWTKK0.3591.012()[()]exp[exp()]exp[exp()]0.1670.167mxWxWFxFxWW由此得到:WTK1.11W,WT0.19考虑风向时:WTWT()[()]mFxFx=50KK0.323exp[exp()]0.151xWW=KK0.910exp[exp()]0.150xWW由此得到:4WTK0.998W,WT0.19由于WTK0.998WKW所以规范规定的风荷载标准值KW即相当于设计基准使用为50年的考虑了风作用方向的最大风荷载TW概率分布的平均值。4.2求钢筋混凝土轴心受压构件的抗力统计参数。已知C30混凝土2ck17.5N/mmf,fck1.41,cf0.1920MnSi钢筋2yk340N/mmf,fyk1.14,yf0.07截面尺寸k300mmb,k500mmh,bhkk1.0,bh0.02配筋率=0.015,稳定系数0.1,抗力表达式PcySRfbhfA钢筋截面积:As'k1.0,As'0.03计算模式:Pk1.0,Pk0.05解:计算公式为:PPPagg()RKRKRbhRA,统计参数为:RPRabhRgAg=1.4117.5300500+1.143400.0151300500=4573350N令RggKRaaK1.143400.0150.2361.4117.5kRCkR22222222222RabhRgAg2RP22()0.190.020.020.236(0.070.03)(1)(10.236)CC=0.0248得:RRKPRPKKKRR1.3522RKPRP==0.1654.3已知极限状态方程Z=g(R,S)=R-S=0,R=100,S=50,=R0.12,=S0.15,试求下列情况下。5(1)R、S均服从正态分布;(2)R服从对数正态分布,S服从极值I型分布。解:(1)当R、S均服从正态分布时:R=100,S=50,=R0.12,=S0.15RRRu==12,SSSu==7.5得zR22zRSEuuu==3.53(2)R服从对数正态分布,S服从极值I型分布时:1)由于R服从对数正态分布,首先对抗力R进行当量正态化:令*R的初值为其平均值,RlnR1lnRRu=()=R2R1lnln1uRR()=100(1+4.59802153-4.60517019)=99.2852RlnRRln(1)RR==100)12.01ln(2=11.957132)S服从极值I型分布,对荷载S当量化:令S的初始值为其平均值S6/a=/5.76=5.848s0.577uua=50-0.5775.848=46.6257848.51)(1uSay(50-46.6257)=0.57701S()exp[exp()]exp[exp(0.57701)]exp[0.561575]0.5703FSy=S11()exp()exp[exp()]exp(0.57703)exp[exp(0.57703)]5.848Syya=5703.0561575.0848.51=0.0547651SSS()/()FSS=〔〕=054765.0/5703.01〕〔=054765.0177.0)(6=054765.03927417.0054765.0212177.02e=7.171401SSS[()]SFS=='1SSS[()]uFS=50-0.1777.1714=48.73066以R的统计参数R、R代替R的统计参数R、R;并以S的统计参数S、S代替Su、S,计算得可靠度为RSz22zRSuuu==2217140.795713.1173066.48285.99=3.6264.4已知极限状态方程R-G-L=0R——抗力,对数正态分布,Rk1.13R,R=0.1G——恒载,正态分布,Gk1.06G,G=0.07L——活载,极值I型,Lk0.7L,L=0.288设KK0.1LG=及2,目标可靠度指标=3.5,试求相应的设计分项系数。解:(1)RRRu=0.113KR,GGGu=0.0742KG,LLLu=0.2016KL=3.5,1-f(3.5)P=0.9997674(2)极限状态方程为g=R-G-L=0,1gR,1gG,1gL(3)R为对数正态分布:2Rln(1)k=0.00995R1exp(3.50.009950.50.00995)0.1==2.9820G为正态分布:G3.5=L为极值Ⅰ型分布:L{ln[ln(0.9997674)]0.5772}6.0731.2825=(4)RR2.98200.13.5u=0.0852RGGGu=0.0742KG7(5)当KK0.1LG=时LK6.0730.020163.5G=0.03498KG由=3.5=RGL222RKK(0.0852)(0.0742)(0.03498)uuuuGG得KK1.52RGRcos=K222KKK0.08521.131.52(0.14634)(0.0742)(0.03498)GGGG=-0.87G0.0742cos0.440.1678L0.03498cos0.210.1678得R=1.13KR-3.50.87230.08521.13KR=0.836KRG=1.06KG+3.50.44230.0742KG=1.175KGL=0.7KL+3.50.20850.3498KL=0.9553KL因此,当KK0.1LG=时K/GGG==1.18LK/LL==0.96RK/RR==1.20(6)当KK2LG=时LK6.0730.40323.5G=0.6996KG由=3.5=RGL222RKK(0.0852)(0.0742)(0.6996)uuuuGG得KK3.744RGRcos=K222KKK0.08521.133.744(0.3605)(0.0742)(0.6996)GGGG=-0.468G0.0742cos0.090.7905L0.6996cos0.890.7905得R=1.13KR-3.50.45600.08521.13KR=0.976KRG=1.06KG+3.50.0938660.0742KG=1.084KGL=0.7KL+3.5
本文标题:工程结构可靠性理论与应用(习题及答案)
链接地址:https://www.777doc.com/doc-1887656 .html