您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 高等数学极限与中值定理应用
(一)1.22limsin1xxxx22sin1lim()1xxxx洛必达法则222=lim1xxx22.sinlimxxxcoslim1xx13.30tansinlimxxxx30sinsincoslimxxxxx30sin(1cos)limcosxxxxx3302limxxx124.30sinlimxxxx201coslim3xxx16(二)1.若0sinlim(cos)xxxxbea5,求常数a,b0sinlim(cos)xxxxbea0sin(cos)limxxxxbea由等价无穷小可得a=10(cos)sin=lim5xxxbxxe4b2.若0x,2(),()1arcsincosxkxxxxx是等价无穷小,求常数K201arcsincoslim1xxxxkx201arcsincoslim(1arcsincos)xxxxkxxxx201arcsincoslim2xxxxkx20arcsinsin1lim4xxxxxkx'2201()cos11lim4xxxxxk314k34k3.证明当X0时,2(1)lnxx2(1)x22()(1)ln(1)fxxxx'1()2ln2(1)fxxxxxx则12ln2xxxx''21()2(ln1)1fxxx212ln1xx2211ln10xx再倒推可得:'()0fx()0fx(0)fx,所以2(1)lnxx2(1)x(三)1.设()fx在[0,a]上连续,在(0,a)内可导,且()0fa,,证明:(0,)a,使得'()()0ff。求原函数()()Fxxfx(0)()0FFa满足罗尔定律,所以'()0Fx即'()()0ff2.设()fx在[0,1]上连续,在(0,1)上可导。且(0)0,(1)1ff,证明(1)(0,1).()1cfcc推出(2)''(0,1),有f()f()=1()(1)()()1Fxfcc(0)1,(1)1FF由零点定理得(0,1)F(c)=0c有所以(0,1).()1cfcc推出(2)设(,),(,1)occ得'()(0)1()0fcfcfcc'(1)()()11ffccfcc所以''(0,1),有f()f()=1()
本文标题:高等数学极限与中值定理应用
链接地址:https://www.777doc.com/doc-1936998 .html