您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 高等数学第一,二章答案(同济第五版)
08级第一章测试题答案一、1.)0,(2.-23.04.8a,b185.aA2sec二、1.C2.B3.D4.B5.B三、1.412)cos1(tanlim)sin1tan1(sintanlim121sin1tan1lim303030xxxxxxxxxxxxxx2.解:4ln)(lim,2ln2)(lim)(2ln)]([21lim)()12()](cos[1lim10022002xfxfxfxxxfxfxxfxxxxx3.解:1)0sin(lim])[2||sin(lim00xxxxxxx1)2sin(lim])[2||sin(lim00xxxxxxx1])[2||sin(lim0xxxx4.解223000sin-ln(1+)1sinsin-1limln()=limlim6xxxxxxxxxxxxx四、1.222211xxxeye()2..解:xxxxxxysectansecsectansec2,xxytansec3.解:221lnsin2sincosxyxxxxx221lnsinsin2xxxxx221ln(sinsin2)xdyxxxdxx,21|(sin1sin21)xdydx4.解:方程tan()xyexyy两边对x求导:2()sec()()xyyxyexyyxyy,解出:22(sec()1[sec()]xyxyyexyyxexy五、解(3)()0,3,3||(3)(3)xxfxxxxxxx无定义为间断点,0000(3)1(3)1lim()limlim()lim(3)(3)3(3)(3)3xxxxxxxxfxfxxxxxxx,0x是第一类跳跃间断点33(3)lim()lim||(3)(3)xxxxfxxxx,3x是第二类无穷间断点33(3)1lim()lim||(3)(3)6xxxxfxxxx,3x是第一类可去间断点六、解sincoscossindytttdxttt,2222sincos12cossin(cossin)dydttttdxdxdtttttttdt七、解:设nnnnnxn2222211则:1212122nnxnnnn(3分)且21121lim2121lim22nnnnnnn,21)2211(lim222nnnnnn(6分)八、设)0()ln(lim)(xnxexfnnn,(1)讨论)(xf的连续性,(2)求)(xf解(1)ln[1()]ln(),()limlim1nnnnnxnexexefxnnlnln[1()]ln(),()limlimlnnnnnnenxexxxefxxnnln(2),()lim1nnexefxn1()lnxefxxxelim()lim1lim()limln1xexexexefxfxx所以在(,)内连续。1,()0,,()xefxxefxxlnln(1)ln1lnln1()limlimlimlim,xexexexexxexxeeefexexexexee11()lim0,()()xefefefexe,所以在xe处不可导0()1xefxxex九、证:设)(xf在]3,1[上连续,且3)3()2()1(fff,则]3,1[,使得1)(f。解因为)(xf在]3,1[上连续,所以存在最小值m、最大值M,使)3,2,1(,)(iMifmMfffm3)3()2()1(3,Mfffm3)3()2()1(,(3分)由介值定理知,在]3,1[上至少存在一点,使得13)3()2()1()(ffff,即1)(f。(6分)
本文标题:高等数学第一,二章答案(同济第五版)
链接地址:https://www.777doc.com/doc-1937014 .html