您好,欢迎访问三七文档
第5模块第3节[知能演练]一、选择题1.若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,则实数a的值是()A.3B.1C.0D.-1解析:可用特殊值法,由Sn得a1=3-a,a2=6,a3=18,由等比数列的性质可知a=1.答案:B2.设a1,a2,a3,a4成等比数列,其公比为2,则2a1+a22a3+a4的值为()A.14B.12C.18D.1解析:由题意得a2=2a1,a3=4a1,a4=8a1.∴2a1+a22a3+a4=2a1+2a18a1+8a1=14.答案:A3.等比数列{an}前n项的积为Tn,若a3a6a18是一个确定的常数,那么数列T10,T13,T17,T25中也是常数的项是()A.T10B.T13C.T17D.T25解析:a3a6a18=a31q2+5+17=(a1q8)3=a39,即a9为定值,所以下标和为9的倍数的两项积为定值,可知T17为定值.答案:C4.已知等比数列{an}中,a1+a2=30,a3+a4=120,则a5+a6等于()A.240B.±240C.480D.±480解析:∵{an}为等比数列,∴数列a1+a2,a3+a4,a5+a6也成等比数列,∴(a3+a4)2=(a1+a2)(a5+a6),∴a5+a6=120230=480.答案:C二、填空题5.等比数列{an}中,a1+a3=10,a4+a6=54,则数列{an}的通项公式为________.解析:由a4=a1q3,a6=a3q3得a4+a6a1+a3=q3=54×110=18,∴q=12,又a1(1+q2)=10,∴a1=8.∴an=a1qn-1=8×(12)n-1=24-n.答案:an=24-n6.在等差数列{an}中,a1=1,a7=4,数列{bn}是等比数列,已知b2=a3,b3=1a2,则满足bn1a80的最小自然数n是________.解析:{an}为等差数列a1=1,a7=4,6d=3,d=12.∴an=n+12,{bn}为等比数列,b2=2,b3=23,q=13.∴bn=6×(13)n-1,bn1a80=281,∴8126×13n-1,即3n-281=34.∴n6,从而可得nmin=7.答案:7三、解答题7.设数列{an}的前n项和Sn=2an-2n.(1)求a3,a4;(2)证明:{an+1-2an}是等比数列;(3)求{an}的通项公式.(1)解:因为a1=S1,2a1=S1+2,所以a1=2,S1=2.由2an=Sn+2n知2an+1=Sn+1+2n+1=an+1+Sn+2n+1,得an+1=Sn+2n+1,①所以a2=S1+22=2+22=6,S2=8,a3=S2+23=8+23=16,S3=24.a4=S3+24=40.(2)证明:由题设和①式知an+1-2an=(Sn+2n+1)-(Sn+2n)=2n+1-2n=2n.所以{an+1-2an}是首项为2,公比为2的等比数列.(3)an=(an-2an-1)+2(an-1-2an-2)+…+2n-2(a2-2a1)+2n-1a1=(n+1)·2n-1.8.设各项均为正数的数列{an}和{bn}满足5an,5bn,5an+1成等比数列,lgbn,lgan+1,lgbn+1成等差数列,且a1=1,b1=2,a2=3,求通项an、bn.解:∵5an,5bn,5an+1成等比数列,∴(5bn)2=5an·5an+1,即2bn=an+an+1.①又∵lgbn,lgan+1,lgbn+1成等差数列,∴2lgan+1=lgbn+lgbn+1,即a2n+1=bn·bn+1.②由②及ai0,bj0(i、j∈N*)可得an+1=bnbn+1.③∴an=bn-1bn(n≥2).④将③④代入①可得2bn=bn-1bn+bnbn+1(n≥2),∴2bn=bn-1+bn+1(n≥2).∴数列{bn}为等差数列.∵b1=2,a2=3,a22=b1b2,∴b2=92.∴bn=2+(n-1)(92-2)=12(n+1)(n=1也成立).∴bn=n+122.∴an=bn-1·bn=n22·n+122=nn+12(n≥2).又当n=1时,a1=1也成立.∴an=nn+12.[高考·模拟·预测]1.已知等比数列{an}的公比为正数,且a3·a9=2a25,a2=1,则a1=()A.12B.22C.2D.2解析:因为a3·a9=2a25,则由等比数列的性质有:a3·a9=a26=2a25,所以a26a25=2,即(a6a5)2=q2=2,因为公比为正数,故q=2.又因为a2=1,所以a1=a2q=12=22.答案:B2.已知等比数列{an}满足an0,n=1,2,…,且a5·a2n-5=22n(n≥3),则当n≥1时,log2a1+log2a3+…+log2a2n-1=()A.n(2n-1)B.(n+1)2C.n2D.(n-1)2解析:设等比数列{an}的首项为a1公比为q,∵a5·a2n-5=a1q4·a1q2n-6=22n,即a21·q2n-2=22n⇒(a1·qn-1)2=22n⇒(an)2=(2n)2,∵an0,∴an=2n,∴a2n-1=22n-1,∴log2a1+log2a3+…+log2a2n-1=log22+log223+…+log222n-1=1+3+…+(2n-1)=1+2n-12·n=n2,故选C.答案:C3.已知数列{an}共有m项,定义{an}的所有项和为S(1),第二项及以后所有项和为S(2),第三项及以后所有项和为S(3),…,第n项及以后所有项和为S(n).若S(n)是首项为2,公比为12的等比数列的前n项和,则当nm时,an等于()A.-12n-2B.12n-2C.-12n-1D.12n-1解析:∵nm,∴m≥n+1.又S(n)=21-12n1-12=4-12n-2,∴S(n+1)=4-12n-1,故an=S(n)-S(n+1)=12n-1-12n-2=-12n-1.答案:C4.设{an}是公比为q的等比数列,|q|1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.解析:由an=bn-1,且数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则{an}有连续四项在集合{-54,-24,18,36,81}中.经分析判断知{an}的四项应为-24,36,-54,81.又|q|1,所以数列{an}的公比为q=-32,则6q=-9.答案:-95.等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b0且b≠1,b,r均为常数)的图象上.(Ⅰ)求r的值;(Ⅱ)当b=2时,记bn=n+14an(n∈N*),求数列{bn}的前n项和Tn.解:(Ⅰ)由题意,Sn=bn+r,当n≥2时,Sn-1=bn-1+r,所以an=Sn-Sn-1=bn-1(b-1),由于b0且b≠1,所以当n≥2时,{an}是以b为公比的等比数列,又a1=b+r,a2=b(b-1),a2a1=b,即bb-1b+r=b,解得r=-1.(Ⅱ)由(Ⅰ)知,n∈N*,an=(b-1)bn-1,当b=2时,an=2n-1,所以bn=n+14×2n-1=n+12n+1.Tn=222+323+424+…+n+12n+1.12Tn=223+324+…+n2n+1+n+12n+2,两式相减得12Tn=222+123+124+…+12n+1-n+12n+2=12+123×1-12n-11-12-n+12n+2=34-12n+1-n+12n+2,故Tn=32-12n-n+12n+1=32-n+32n+1.[备选精题]6.已知数列{an}满足a1=a(a≠0且a≠1),前n项和为Sn,且Sn=a1-a(1-an).(1)求证:{an}是等比数列;(2)记bn=anlg|an|(n∈N*),当a=-73时,是否存在正整数m,使得对于任意正整数n,都有bn≥bm?如果存在,求出m的值;如果不存在,说明理由.解:(1)当n≥2时,Sn=a1-a(1-an),Sn-1=a1-a(1-an-1),an=Sn-Sn-1=a1-a[(1-an)-(1-an-1)]=a1-a(an-1-an),即an=aan-1.又a1=a≠0,所以anan-1=a,所以{an}是首项和公比都为a的等比数列.(2)由(1)知,an=an,则bn=anlg|an|=nanlg|a|.又a=-73∈(-1,0),则lg|a|0.所以当n为偶数时,bn=nanlg|a|0;当n为奇数时,bn0.可见,若存在满足条件的正整数m,则m为偶数.b2k+2-b2k=[(2k+2)a2k+2-2ka2k]lg|a|=2a2k[(k+1)a2-k]lg|a|=2a2k[k(a2-1)+a2·a2-1a2-1]lg|a|=2a2k(a2-1)(k-a21-a2)lg|a|(k∈N*).当a=-73时,a2-1=-29,∴2a2k(a2-1)lg|a|0.又a21-a2=72,当k72时,b2k+2b2k,即b8b10b12…;当k72时,b2k+2b2k,即b8b6b4b2.故存在正整数m=8使得对于任意正整数n,都有bn≥bm.
本文标题:高中习题数学5-3
链接地址:https://www.777doc.com/doc-1939804 .html