您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 高中数学学案46直线与直线的位置关系
学案46直线与直线的位置关系导学目标:1.能根据两条直线的斜率判定这两条直线平行或垂直.2.能用解方程组的方法求两条相交直线的交点坐标.3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.自主梳理1.两直线的位置关系平面上两条直线的位置关系包括平行、相交、重合三种情况.(1)两直线平行对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔_________________________________________________________________.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A2B2C2≠0),l1∥l2⇔__________________________________________________________________.(2)两直线垂直对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1⊥l2⇔k1·k2=____.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=____.2.两条直线的交点两条直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,如果两直线相交,则交点的坐标一定是这两个方程的________;反之,如果这两个二元一次方程只有一个公共解,那么以这个解为坐标的点必是l1和l2的________,因此,l1、l2是否有交点,就看l1、l2构成的方程组是否有________.3.有关距离(1)两点间的距离平面上两点P1(x1,y1),P2(x2,y2)间的距离P1P2=__________________________________.(2)点到直线的距离平面上一点P(x0,y0)到一条直线l:Ax+By+C=0的距离d=______________________.(3)两平行线间的距离已知l1、l2是平行线,求l1、l2间距离的方法:①求一条直线上一点到另一条直线的距离;②设l1:Ax+By+C1=0,l2:Ax+By+C2=0,则l1与l2之间的距离d=________________.自我检测1.(2010·济宁模拟)若点P(a,3)到直线4x-3y+1=0的距离为4,且点P在不等式2x+y-30表示的平面区域内,则实数a的值为________.2.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过的定点的坐标为________.3.已知直线l1:ax+by+c=0,直线l2:mx+ny+p=0,则ambn=-1是直线l1⊥l2的______________条件.4.(2009·上海)已知直线l1:(k-3)x+(4-k)y+1=0与l2:2(k-3)x-2y+3=0平行,则k的值是________.5.已知2x+y+5=0,则x2+y2的最小值是________.探究点一两直线的平行与垂直例1已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1⊥l2时,求a的值.变式迁移1已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0.求满足以下条件的a、b的值:(1)l1⊥l2且l1过点(-3,-1);(2)l1∥l2,且原点到这两条直线的距离相等.探究点二直线的交点坐标例2已知直线l1:4x+7y-4=0,l2:mx+y=0,l3:2x+3my-4=0.当m为何值时,三条直线不能构成三角形.变式迁移2△ABC的两条高所在直线的方程分别为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.探究点三距离问题例3已知点P(2,-1).求:(1)求过P点且与原点距离为2的直线l的方程;(2)求过P点且与原点距离最大的直线l的方程,最大距离是多少?(3)是否存在过P点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.变式迁移3已知直线l过点P(3,1)且被两平行线l1:x+y+1=0,l2:x+y+6=0截得的线段长为5,求直线l的方程.转化与化归思想例(14分)已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)点A关于直线l的对称点A′的坐标;(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;(3)直线l关于点A(-1,-2)对称的直线l′的方程.【答题模板】解(1)设A′(x,y),再由已知y+2x+1×23=-1,2×x-12-3×y-22+1=0,解得x=-3313,y=413,∴A′-3313,413.[4分](2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点M′必在直线m′上.设对称点M′(a,b),则2×a+22-3×b+02+1=0,b-0a-2×23=-1,得M′613,3013.[8分]设直线m与直线l的交点为N,则由{2x-3y+1=0,x-2y-6=0,得N(4,3).又∵m′经过点N(4,3),∴由两点式得直线m′的方程为9x-46y+102=0.[10分](3)方法一在l:2x-3y+1=0上任取两点,如M(1,1),N(4,3),则M,N关于点A(-1,-2)的对称点M′,N′均在直线l′上,易得M′(-3,-5),N′(-6,-7),再由两点式可得l′的方程为2x-3y-9=0.[14分]方法二∵l∥l′,∴设l′的方程为2x-3y+C=0(C≠1),∵点A(-1,-2)到两直线l,l′的距离相等,∴由点到直线的距离公式得|-2+6+C|22+32=|-2+6+1|22+32,解得C=-9(C=1舍去),∴l′的方程为2x-3y-9=0.[14分]方法三设P(x,y)为l′上任意一点,则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y),∵点P′在直线l上,∴2(-2-x)-3(-4-y)+1=0,即2x-3y-9=0.[14分]【突破思维障碍】点关于直线对称是轴对称中最基本的,要抓住两点:一是已知点与对称点的连线与对称轴垂直;二是已知点与对称点为端点的线段中点在对称轴上.直线关于点的对称可转化为点关于点的对称,直线关于直线的对称可转化为点关于直线的对称.【易错点剖析】(1)点关于线对称,不能转化为“垂直”及“线的中点在轴上”的问题.(2)线关于线对称,不能转化为点关于线的对称问题;线关于点的对称,不能转化为点关于点的对称问题.1.在两条直线的位置关系中,讨论最多的还是平行与垂直,它们是两条直线的特殊位置关系.解题时认真画出图形,有助于快速准确地解决问题.判断两直线平行与垂直时,不要忘记考虑斜率不存在的情形,利用一般式则可避免分类讨论.2.运用公式d=|C1-C2|A2+B2求两平行直线间的距离时,一定要把x、y项系数化为相等的系数.3.对称思想是高考热点,主要分为中心对称和轴对称两种,关键要把握对称问题的本质,必要情况下可与函数的对称轴建立联系.(满分:90分)一、填空题(每小题6分,共48分)1.若直线x+ay-a=0与直线ax-(2a-3)y-1=0互相垂直,则a的值是________.2.已知直线l的倾斜角为3π4,直线l1经过点A(3,2)、B(a,-1),且l1与l垂直,直线l2:2x+by+1=0与直线l1平行,则a+b=________.3.(2011·南通模拟)P点在直线3x+y-5=0上,且点P到直线x-y-1=0的距离为2,则P点坐标为________________.4.(2010·重庆云阳中学高三月考)直线l1:x+my+6=0和l2:3x-3y+2=0,若l1∥l2,则m的值为______.5.设直线l经过点(-1,1),则当点(2,-1)与直线l的距离最大时,直线l的方程为______________.6.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为22,则m的倾斜角可以是①15°②30°③45°④60°⑤75°其中正确答案的序号是________.7.设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a、b是方程x2+x+c=0的两个实根,且0≤c≤18,则这两条直线之间的距离的最大值和最小值分别是________和________.8.平行四边形两相邻边方程是x+y+1=0和3x-y+4=0,对角线交点(3,3),则另两边的方程为________________________________________________和______________.二、解答题(共42分)9.(14分)(1)已知点P1(2,3),P2(-4,5)和A(-1,2),求过点A且与点P1,P2距离相等的直线方程.(2)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0与l2:x+y+3=0之间的线段AB恰被点P平分,求此直线的方程.10.(14分)已知△ABC的一个顶点A(-1,-4),内角∠B,∠C的平分线所在直线的方程分别为:l1:y+1=0,l2:x+y+1=0.求边BC所在直线的方程.11.(14分)已知直线方程(a-2)y=(3a-1)x-1.(1)无论a为何实数,该直线是否总经过第一象限?(2)为使直线不经过第二象限,求实数a的取值范围.学案46直线与直线的位置关系答案自主梳理1.(1)k1=k2且b1≠b2A1A2=B1B2≠C1C2(2)-102.公共解交点唯一解3.(1)x2-x12+y2-y12(2)|Ax0+By0+C|A2+B2(3)②|C1-C2|A2+B2自我检测1.-32.(0,2)3.充分不必要4.3或55.5课堂活动区例1解题导引运用直线的斜截式y=kx+b讨论两直线位置关系时,要特别注意直线斜率不存在时的特殊情况.即若l1∥l2,则k1=k2b1≠b2或两直线斜率均不存在,若l1⊥l2,则k1k2=-1或k1、k2一个为0,另一个不存在.若直线l1、l2的方程分别为A1x+B1y+C1=0和A2x+B2y+C2=0,则l1∥l2的必要条件是A1B2-A2B1=0,而l1⊥l2的充要条件是A1A2+B1B2=0.解题中为避免讨论,常依据上述结论去解题.解(1)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不平行;当a=0时,l1:y=-3,l2:x-y-1=0,l1与l2不平行;当a≠1且a≠0时,两直线可化为l1:y=-a2x-3,l2:y=11-ax-(a+1),l1∥l2⇔-a2=11-a,-3≠-a+1,解得a=-1,综上可知,a=-1时,l1∥l2,否则l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0.由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2⇔aa-1-1×2=0aa2-1-1×6≠0⇔a2-a-2=0,aa2-1≠6.∴a=-1,故当a=-1时,l1∥l2,否则l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直;当a=0时,l1:y=-3,l2:x-y-1=0,l1与l2不垂直;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),由-a2·11-a=-1⇒a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0⇒a=23.变式迁移1解(1)由已知可得l2的斜率必存在,且k2=1-a.若k2=0,则a=1.由l1⊥l2,l1的斜率不存在,∴b=0.又l1过(-3,-1),∴-3a+b+4=0,∴b=3a-4=-1,矛盾.∴此情况不存在,即k2≠0.若k2≠0,即k1=ab,k2=1-a.由l1⊥l2,得k1k2=ab(1-a)=-1.由l1过(-3,-1),得-3a+b+4=0,解之得a=2,b=2.(2)∵l2的斜率存在,l1∥l2,∴l1的斜率存在,∴k1=k2,即ab=1-a.又原点
本文标题:高中数学学案46直线与直线的位置关系
链接地址:https://www.777doc.com/doc-1944751 .html