您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 量子力学典型例题分析解答
量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解]薛定谔方程:当,故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n值,可解一个,为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型:1.算符运算;2.力学量的平均值;3.力学量几率分布.一.有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符,为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取:试证明:也是和共同本征函数,对应本征值分别为:。[证]。是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率,出现的几率能量平均值另一做法3.一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1),归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。4.设氢原子处于状态求氢原子的能量,角动量平方以及角动量z分量的可能值,这些可能值出现的几率和这些力学量的平均值。[解]能量本征值能量本征态当n=2时本征值为的,出现的几率为100%可能值为出现的几率分别为:。5.在轨道角动量和共同的本征态下,试求下列期望值(1).;(2).[解]:三测不准关系1.粒子处于状态式中为常数,求粒子的动量的平均值,并计算测不准关系[解]先归一化(1)动量平均值(2)(3)附:常用积分式:(1)(2)(3)第四章例题1.力学量的矩阵表示由坐标算符的归一化本征矢及动量算符构造成算符和试分别:1).求和在态下的期望值;2).给出和的物理意义【解】(1).设态矢已归一化(粒子位置几率密度)(2)(利用化到坐标表象)又:,上式2.试证明:由任意一对以归一化的共轭右矢和左矢构成的投影算符(1).是厄密算符,(2).有,(3).的本征值为0和1【证】(1).厄密算符的定义为厄密算符(2)已归一化(3).由的本征值方程,又:即:(本题主要考查厄密算符概念,本征值方程,狄拉克符号的应用)3.分别在坐标表象,动量表象,能量表象中写出一维无限深势井中(宽度)基态粒子的波函数。(本题主要考查波函数在具体表象中的表示)【解】所描述的状态,基态波函数(1).在x表象:(2).动量表象:(3).能量表象同样一个态在不同表象中的表示是不同的,不同的表象是从不同侧面来进行描述的.4.取和的共同表象,在角动量空间中写出,,的矩阵(本题主要考查算符矩阵的求法)【解】,的共同本征函数为在空间(1).,同样(2)利用:利用正交归一条件:同样(3)利用:矩阵:矩阵:5.已知体系的哈密顿量,试求出(1).体系能量本征值及相应的在所在的表象的正交归一化的本征矢组.(2).将对角化,并给出对角化的么正变换矩阵【解】(1).久期方程解之,设正交归一的本征矢对应于本征矢归一化对应归一本征矢同样::即为的本征函数集(2).对角化后,对角元素即为能量本转换矩阵为6.证明:将算符矩阵对角化的转换矩阵的每一列对应于算符的一个本征函数矢量。【证】算符的本征矢:则F算符在自身表象中为一对角矩阵:对另一表象力学量的本征矢的本征矢7.为厄密算符。①求算符的本征值,②在A表象下求算符的矩阵表示。[解]:①设的本征值为,本征函数为,则又同理算符的本征值也为.②在A表象,算符的矩阵为一对角矩阵,对角元素为本征值,即设利用B为厄密算符即又取:第五章例题重点:微扰论1.一根长为,无质量的绳子一段固定于支点,另一端系质量为的质点,在重力作用下,质点在竖直平面内摆动。i)在小角近似下,求系统能级;ii)求由于小角近似的误差产生的基态能量的一级修正。解:i)势能:系统的哈密顿量在小角近似下:ii)若不考虑小角近似又利用公式,同样2.一维谐振子的哈密顿量为,假设它处于基态,若在加上一个弹力作用,使用微扰论计算对能量的一级修正,并与严格解比较。解:i),又ii)严格解发生了变化3.已知体系的能量算符为,其中,为轨道的角动量算符。(1)求体系能级的精确值。(2)视项为微扰项,求能级至二级近似值。[解]:i)精确解令,并在平面上取方向:与z轴的夹角为,则与相互对易,它们的本征值分别为体系能级为ii)微扰法的精确解为本征函数本征能量按微扰论利用了公式能量二级修正为在二级近似下4.三维谐振子,能量算符为,试写出能级和能量本征函数。如这振子又受到微扰,的作用,求最低的两个能级的微扰修正。并和精确值比较。[解]:(1设的能量本征函数为代入方程(2).基态的微绕修正对基态波函数基态能级的零级,无简并能量的二级修正:唯一不等于零的矩阵元为(3).第一激发态三度简并计算不为零的矩阵元为久期方程可求出能量的一级修正(4).精确解令基态第一激发态5.设粒子的势能函数是坐标的n次齐次函数,即试用变分法证明,在束缚态下,动能T及势能V的平均值满足下列关系(维里定理)[证]设粒子所用的态用归一化波函数描写则取试态波函数为由归一化条件当时,试态波函数即是粒子所处的束缚态波函数。应在时,取极值6.氢原子处于基态,加上交变电场,电离能,用微扰论一级近似计算氢原子每秒离几率。[解]:解这一类问题要搞清楚三个要素,初态末态是什么?微扰矩阵元?初态:氢原子基态末态:自由状态为能量为,在单位立体角的末态密度。微扰7.转动惯量为I,电偶极矩为D的平面转子,置于均匀场强E(沿x方向)中,总能量算符成为,为旋转角(从x轴算起)如果电场很强,很小,求基态能量近似值。[解]:方法一与一位谐振子的能量本征方程比较有方法二用变分法,取归一化的试探波函数所得结果与方法二一致。8.设在表象中,的矩阵表示为其中,试用微扰论求能级二级修正[解]:在表象中,第六章例题1.有关泡利矩阵的一些关系的证明(注意应用一些已知结论)1).;(2).;(3).;(4).设则,.【证】(1).(2).(3).(4).2.证明:并利用此结论求本征值【证】设的本征函数为则又,,3.设为常数,证明【证】将展开成的幂级数,有,为偶数;为奇数上式4.求自旋角动量在任意方向(方位角为)的投影的本征值及本征矢(在表象),【解】在表象中,,在表象中的矩阵表示为设的本征值为,相应本征矢为,本征方程为=解久期方程,将代入本征方程由归一化条件对应的本征矢为同样:对应的本征矢为通过本题讨论我们发现,的本征值为,自旋算符在任意方向上的分量的本征值也是。也进一步推广,对任一种角动量算符,如有的本征值为,的本征值为则在任意方向上的分量的本征值的可能值也为。5.有一个定域电子(不考虑轨道运动)受均匀磁场作用,磁场指向正方向,磁作用势为,设时电子的自旋向上,即求时的平均值。[解]设自旋函数在表象中体系的哈密顿算符可表示为则自旋态所满足的薛定谔方程为同理又,自旋再由即6.在自旋态中,求【解】同理7.已知电子的态函数为其中已归一化,求(1).同时测量为,为的几率。(2).电子自旋向上的几率。(3).和平均值。[解]首先验证态函数是否归一化[erfwfff1]①同时测量为,为的几率②电子自旋向上的几率:③8.考虑由两个相同粒子组成得体系。设可能的单粒子态为,试求体系的可能态数目。分三种情况讨论(1)。粒子为玻色子;(2)粒子为费米子;(3)粒子为经典粒子.[解]①玻色子构成的系统,系统态函数必须是对称的a.如两个粒子处于同一单粒子态:共三种b.如两个粒子处于不同一单粒子态对称的波函数为共三种,因而,对玻色子可能态数为六种,①费米子构成的系统,系统态函数必须是反对称的全同费米子不能处于同一态上(泡利原理).反对称波函数的形式只能是共三种.②对经典粒子,全同粒子是可区分的,粒子体系波函数没有对称性要求,波函数形式只要求都可以)的有三种,的有六种的共九种。9.试写出自旋的两个自由电子所构成的全同体系的状态波函数。[解]自旋的两电子构成的是费米子体系,体系状态的波函数是反对称的每个电子处于自由状态,单电子的状态波函数为平面波它们所构成的对称波函数形式为它们所构成的反对称波函数形式为二电子体系的自旋部分的对称或反对称波函数为:总的波函数:10.证明:组成正交归一系。[证]①②③11.两个自旋为的粒子有磁相互作用,设它们的质量很大,动能可以忽略,求此系统的所有能量本征值和本征函数。[解]对两个自旋为的系统,总自旋量子数对的本征函数为本征值为能量本征值对的本征函数
本文标题:量子力学典型例题分析解答
链接地址:https://www.777doc.com/doc-1966198 .html