您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 药学 > 重复测量资料的统计分析方法
培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理重复测量资料的统计分析方法在临床医学研究中,一些干预研究和纵向研究都经常会涉及到同一研究对象的多次观察,而同一个对象的多次观察的记录资料称为重复测量的资料。由于同一对象不同时间点的观察往往存在相关的问题,也就是存在不独立性的问题,而大多数的医学统计方法都要求资料是独立,所以这些资料的统计分析需要比较特殊的统计方法进行分析。本节将先举例介绍常见的重复测量资料,并介绍相应的重复测量资料的统计分析方法。一、单个样本的重复测量资料例1为了考察某药物减肥的作用,现考察5个身高为160cm、服用该药的女性肥胖者,疗程为3个月,这5名女性肥胖者在服用该药前后的体重测量值(kg)如下:肥胖者编号12345服药前体重Y0i5052495546服药后体重Y1i4851495245这是一组观察对象的资料,每个观察对象有两个时间点的测量资料,因此这是最简单的重复观察测量资料(也可以认为配对设计的资料)。由于各个观察对象在服药前的体重不全相同,所以其体重含有服培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理药前的体重个体变异成分,而在服药后,各个观察对象的体重下降幅度也不全相同,故存在体重下降幅度的个体变异成分,因此观察对象在服药后的体重中不仅含有体重下降幅度的个体变异成分,而且还含有服药前的体重个体变异成分,故服药前后的体重资料不独立。对于这种不独立资料的统计分析一般采用变异成分的分解或消除某一个体变异成分的方法进行统计处理的。如配对t检验和符号秩检验就是采用服药前后资料相减作为统计分析数据,因而消除了服药前体重的个体变异,使进入统计分析的资料仅含有体重下降幅度的个体变异,但这种消除某种不独立的变异成分的统计方法无法对比较复杂的重复测量资料进行统计分析。因而本节将借助统计软件Stata,介绍应用混合模型(MixedModel)对重复测量资料进行统计分析。设观察对象体重的总体均数为0,服药后体重总体均数为1,即服药前后的体重改变量的总体均数为=1-0。若=0说明服药前后的体重平均变化为0,即无疗效;若0,说明服药后的人群平均体重低于服药前的平均体重,即该药物减肥是有效的;若0,说明服药后的平均体重高于服药前的平均体重,即该药对减肥有不利的作用。针对本例服药前后的体重总体均数的变化关系,引入自变量t,建立下列服药前后的体重总体均数表达式(即混合模型的确定性部分表达式)。0t(12-1)t=0时,为服药前的体重总体均数0;t=1时,为服药后的体重总体均数1。应用混合模型可以对本例资料进行统计分析,其中培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理和0的参数估计一般采用限制的最大似然法,然而计算相当复杂,故我们将借助Stata软件对上述资料用混合模型进行统计分析,相应的Stata软件的数据格式如下。tyno0501052204930554046514811512149315241455其中y为体重测量值,t为服药时间的自变量,no为观察对象的编号,相应的Stata操作命令如下:Random-effectsGLSregressionNumberofobs=10Groupvariable(i):noNumberofgroups=5R-sq:within=0.6533Obspergroup:min=2between=.avg=2.0overall=0.0612max=2培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理Randomeffectsu_i~GaussianWaldchi2(1)=7.54corr(u_i,X)=0(assumed)Probchi2=0.0060------------------------------------------------------------------------------y|Coef.Std.Err.zP|z|[95%Conf.Interval]-------------+----------------------------------------------------------------t|-1.4.509902-2.750.006-2.399389-.4006105_cons|50.41.37113136.760.00047.7126353.08737-------------+----------------------------------------------------------------sigma_u|2.9580399sigma_e|.80622577rho|.93085106(fractionofvarianceduetou_i)------------------------------------------------------------------------------估计值为-1.4,0估计值为50.4,而1的估计值=50.4-1.4=49。H0:=0即无减肥疗效H1:0即服药前后的人群平均体重不同=0.05相应的P值=0.006,因此服药前后平均体重的差异有统计学意义,故可以认为该药物有减肥疗效。例2为了考察某药物在疗程为6个月中的持续减肥作用,现考察5个服用该药的女性肥胖者并且身高为162cm的,这5名女性肥胖者在服用该药前、服药3个月和服药6个月的体重测量值(kg)如下:培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理肥胖者编号服药前3个月6个月14846422535147352524845251485535249这是一组观察对象的多个测量时间点的重复观察测量资料,因此同一对象的不同观察时间点的观察资料是相关的。(也可以视为配伍区组设计的观察资料,用随机区组设计的方差分析或Friedman秩检验的统计方法检验该药物的减肥作用),因此可用混合模型进行统计分析。设观察对象在服药前的体重总体均数为0、服药3个月时的体重总体均数0+1,服药6个月时的体重总体均数为0+2,即:1为服药3个月时的体重平均改变量,2为服药6个月时的体重平均改变量。针对本例服药前后的体重总体均数的变化关系,引入自变量t1和t2,建立下列服药前后的体重总体均数表达式22110tt(12-2)若t1=t2=0时,为服药前的体重总体均数0;t1=1,t2=0时,为服药3个月时的体重总体均数0+1。若10,说明服药3个月时的服药人群平均体重低于服药前的平均体重,即该减肥药有效,反之无疗效;t1=0,t2=1时,为服药6个月时的体重总体均数0+2,而培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理20和20同样反映该减肥药有效或无效。若21,说明服药6个月时的服药人群平均体重低于3个月时的服药人群平均体重到期间。我们同样借助Stata软件对上述资料用混合模型进行统计分析,相应的Stata软件的数据格式如下。noyt1t2148002530035200452005530014610251103521045110552101420124701348014480154901其中t1和t2为服药时间的自变量,其他与例12-1相同,相应的培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理Stata操作命令如下:Stata命令为xtregyt1t2,i(no)相应输出结果如下:Random-effectsGLSregressionNumberofobs=15Groupvariable(i):noNumberofgroups=5R-sq:within=0.9551Obspergroup:min=3between=.avg=3.0overall=0.4602max=3Randomeffectsu_i~GaussianWaldchi2(2)=170.18corr(u_i,X)=0(assumed)Probchi2=0.0000------------------------------------------------------------------------------y|Coef.Std.Err.zP|z|[95%Conf.Interval]-------------+----------------------------------------------------------------t1|-1.2.3829708-3.130.002-1.950609-.4493909t2|-4.8.3829708-12.530.000-5.550609-4.049391_cons|51.61.10453646.720.00049.4351553.76485-------------+----------------------------------------------------------------sigma_u|2.394438sigma_e|.60553007rho|.93989071(fractionofvarianceduetou_i)------------------------------------------------------------------------------培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理3个月时的体重与6个月时的体重比较的Stata命令和输出结果如下:testt1=t2(H0:2=1)(1)t1-t2=0.0chi2(1)=88.36Probchi2=0.00001估计值为-1.2(kg),2估计值为-4.8(kg),服药前体重总体均数0的估计值为51.6(kg);服药3个月时的体重总体均数0+1的估计值为51.6-1.2=50.4(kg);服药6个月时的体重总体均数0+2的估计值为51.6-4.8=46.8(kg)。H0:1=0即服药3个月时减肥无效H1:0即服药3个月时与服药前的人群平均体重不同=0.05相应的P值=0.002,因此差异有统计学意义,故可以认为该药物在服药3个月时有减肥疗效。H0:2=0即服药6个月时减肥无效H1:20即服药6个月时与服药前的人群平均体重不同=0.05相应的P值0.001,因此差异有统计学意义,故可以认为该药物在服药6个月时有减肥疗效。H0:2=1即从服药3个月至6个月时,没有继续减肥H1:21即服药6个月时与服药3个月的人群平均体重不同=0.05培训管理资料大全《商务智库》整理培训管理资料大全《商务智库》整理相应的P值0.001,因此差异有统计学意义,故可以认为服药3个月至6个月期间,继续有减肥疗效。多个样本多个时间点重复观察资料例12-3为了比较A药和B药在疗程为6个月中的持续减肥的疗效,现有10个身高为160cm的女性肥胖者志愿参加这项研究。随机分成2组,每组各5人。分别考察这2组肥胖者在服药前、3个月和服药6个月的体重变化。这2组肥胖者在服用该药前、服药3个月和的体重测量值(kg)如下:组别和肥胖者编号服药前3个月6个月A药组1号524942A药组2号515046A药组3号504941A药组4号5149
本文标题:重复测量资料的统计分析方法
链接地址:https://www.777doc.com/doc-1976725 .html