您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 非易失性存储器主导闪存发展的关键技术
非易失性存储器主导闪存发展的关键技术非易失性存储器主导闪存几乎无处不在,特别是在移动设备中。闪存具有各种外形尺寸,随着成本的不断降低以及容量和工作寿命的不断增加,闪存不断地推动着越来越多的平台中硬盘驱动器的发展。NAND和NOR闪存主导着固态非易失性存储器(NVM)市场,但是这些闪存并不是唯一可用的技术。不会明确地暴露闪存的外形尺寸是使用非闪存技术来替代的可能目标。比如,非闪存产品正在串行存储领域中暂露头角。闪存具有各种外形尺寸,包括SecureDigital(a)、MicroSD(b)、Sony记忆棒(c)、紧凑型闪存(d)和mSATA(e)。它们一般都采用NAND闪存非易失性固态存储器一方面是一次性可编程(OTP)存储器。现在,OTP存储器一般用来保存安全密钥或网络ID。它是采用诸如熔丝、反熔丝和浮栅等各种技术实现的。这种存储器还可以采用标准CMOS技术来实现。带动NVM规模的是各种多次可编程(MTP)存储器技术,这类技术可以写入上百次甚至上千次。MTP存储器一般用来实现很少更改的启动代码。与OTP一样,MTP一般是采用CMOS技术实现的,这样就可以用在数字逻辑中。浮栅EEPROM已经在数据存储中得到普遍的应用。由于具有写入单字节的能力、良好的耐力和数据保持能力,浮栅EEPROM已经相当流行,但是闪存技术在密度上远胜于浮栅EEPROM。EEPROM仿真常常被视为某些闪存实现方案的一种功能,它可以隐藏闪存的块擦除要求,以便能够写入单个字节。其他的非易失性技术正在不断地提升闪存的优势,包括磁阻RAM(MRAM)、铁电RAM(FRAM)、相变存储器(PCM)以及前途无量的NVM技术。与NAND和NOR闪存等其他NVM技术相比,这些技术都具有更高的总体性能,包括写入速度、电压要求、缺少页面擦除周期、长期耐用性、数据保持能力和可扩展性。今后,这些可供选择的NVM技术将在更多的设计中得到应用。不过现在,闪存仍是主导的NVM技术。闪存发展的关键技术闪存的尺寸小型串行闪存设备的外形尺寸差异相当大。有支持一级(1Wire)协议的三引脚设备以及支持I2C和SPI的各种设备。四SPI(QSPI)NVM设备可将传输的位数增加四分之一,甚至还有微控制器,这类设备可以直接从QSPI串行存储器中执行程序。将程序保存在串行闪存中是相当常见的。大多数PC都将其BIOS保存在串行闪存中。芯片引导装载程序将该程序复制到执行该程序的RAM中。一次执行一个命令。串行存储器是FRAM和MRAM等其他技术应用的首个用武之地之一。串行存储器一般包含温度传感器和实时时钟(RTC)等其他子系统。有些RTC甚至利用串行存储器保存时间戳信息。具有JEDECe-MMC(嵌入式多媒体卡)外形尺寸的芯片采用与可移动七引脚MMC外形尺寸相同的串行接口。对于开发人员来讲,其优势在于他们可以对固定存储器和移动存储器使用同样的接口。该七引脚MMC设备可插入与九引脚SD和九引脚SDIO设备相同的插槽中,因此I/O设备可以置于该卡上。SD与MMC具有相同的引脚分布,其外沿附近增加了两个额外的引脚。MMC接口本质上是SPI接口,SD为QSPI接口。11引脚miniSD卡和八引脚microSD卡都采用相同类型的接口,只不过封装更小。这些串行设备的传输速率为832Mbps。移动闪存也采用USB、SATA和SAS接口。SAS往往只用于驱动器上,而SATA则用于具有磁盘驱动器外形尺寸的闪存驱动器以及像VikingTechnology公司的SATACube3这样的嵌入式设备中。SATACube3是一堆带闪存和控制器的电路板。电路板越多,表明存储容量越大。板上SATA设备还包含mSATA和SlimSATA模块等标准。相比与SD卡等介质配合使用的SPI/QSPI接口,SATA接口可以提供高相当多的吞吐能力。大型SATA闪存一般用于1.8、2.5和3.5英寸的硬盘驱动器外形尺寸中。基于IDE的微型闪存仍是许多嵌入式母板上的常见功能部件。随着微控制器从IDE和PCI转换到SATA和PCIExpress,这种情况正在发生变化。虽然摄像机往往采用SD卡,不过仍有许多移动设备(比如数码摄像机)使用微型闪存。USB闪存驱动器已经有效地替代了CD、DVD和软盘。与现在的平均容量相比,首款USB1.x闪存驱动器的存储容量相当小。如今的高端平台的规模相当大,并且采用USB3.0总线标准。容量和速度并不是随着USB闪存驱动器的发展而变化的唯一指标。增加的功能(特别是安全领域中)更为普遍。大多数与安全相关的其他解决方案都采用在主机上运行并使用主机输入所有解码密钥的设备驱动器或者应用程序。Aegis安全密钥具有管理员和用户密码。这些功能可用来对加密和解密保存在闪存中的数据的密钥进行解码。USB闪存驱动器一般用于便携设备中,不过它们也广泛地用在嵌入式设备中。许多母板都有一个内部A型连接器。大多数母板只有背板上有A型连接器。有些设备仅有用于闪存的USB接口和外设接口。USB头在母板上也很常见。它们用于通过线缆和背板连接的额外外部USB接口,还可以用于USB存储器中,母板上不一定总是使用安装孔,但是当板可以用螺栓固定到母板上时,安装孔确实可以提供稳固的解决方案。闪存还可用于双列直插内存模块(DIMM)和小外形DIMM(SODIMM)外形尺寸,不过与DRAM一样,仅使用闪存的解决方案没有标准。另一方面,有些方案将DRAM与闪存整合在一起。闪存作为备份,用于在断电时保存DRAM的内容。超级电容器足以执行复制操作。使用这些混合存储器的难题在于软件需要考虑非易失性。过去,具有磁芯存储器的计算机可以在不重装操作系统或应用程序的情况下关断和导通。这可以节省相当长的时间,对于嵌入式应用来讲非常方便。现在,主要存储器一般是DRAM。关断系统后,这种存储器中的内容就会丢失,因此默认的恢复过程就会重启系统。与这些已经保存了DRAM先前内容的非易失性解决方案不同的是,保存在闪存中的引导程序不会丢失。大多数这类混合解决方案的目标应用都是企业系统,不过由于它们采用标准DIMM插座,并且看起来像系统硬件的标准DDR2或DDR3DRAM,因此这些混合方案可以轻松地整合到嵌入式应用中。有关电子及相关主题的更多仔细,请查看电子硬件频道
本文标题:非易失性存储器主导闪存发展的关键技术
链接地址:https://www.777doc.com/doc-1980118 .html