您好,欢迎访问三七文档
1习题参考答案题:欧拉临界荷载的推证(一端固定,一端自由);解:由构件x处截面的力矩平衡,得到方程)()(''yPxhPEIy,可进行数学推导,求得欧拉临界荷载值。EIPPhxEIP-EIP''y,令EIPk2,则2222khkxk-k''y;显然平衡方程即为二阶常系数非齐次线性方程的求解。齐次方程求解:0k''2y,令rxey,便可解得kir,故通解为sinkxAcoskxAy21。方程的特解求解:有0x222e)x(khkxk-,其中)x(为一次多项式,由于0不是特征方程的根,可令21BByx,代入方程得222212)(khkxkBxBk,则1B,hB2。于是可得方程的全解为:hxsinkxAcoskxAy21。边界条件:kAhAkAhAyy/)(000)0(')0(2121;所以:22sinkhcoskh)(y(h)hhkh,将方程进行变换便可得到hktankh2,即得证P84中的式(4-4b)。当2kh时,自由端位移2趋近于无穷大,即构件失稳,则欧拉临界荷载为2222E4h)2h(kEIP,即22E4hEIP。24.9题:要求按照等稳定条件确定焊接工字型截面轴心压杆腹板的高厚比。钢材为Q235,杆件长细比为100,翼缘有火焰切割和轧制边两种。计算结果请与规范规定作对比。解:轴心压杆的弹性模量修正系数为,0.18287.0)10206/(235))10206/(2351000248.01(1001013.0/)/0248.011013.0332222EfEfyy(由表4-4,翼缘为火焰切割边的焊接工字型截面的强弱轴均为b类截面,而翼缘为轧制边的焊接工字型截面的弱轴为c类截面,故由杆件长细比查附表17-2和17-3得轴心受压构件的稳定系数分别为0.555和0.463。故翼缘为火焰切割边的焊接工字型截面轴心压杆腹板高厚比为,75235)5.025(20.82]235555.0)3.01(12102068287.043.1[])1(1243.1[5.02325.0min220yywffEth;局部稳定性:13235235132351306.9162/)10300(1yftb翼缘为轧制边的焊接工字型截面轴心压杆腹板高厚比为,75235)5.025(00.90]235463.0)3.01(12102068287.043.1[])1(1243.1[5.02325.0min220yywffEth;局部稳定性:13235235132351375.5202/)10240(1yftb注意:本题等稳定条件为板件的临界应力和构件的临界应力相等,而3不是前面所述的关于x和y等稳定系数。4.18题:如图所示两焊接工字型简支梁截面,其截面积大小相同,跨度均为12m,跨间无侧向支承点,均布荷载大小相同,均作用于梁的上翼缘,钢材为Q235,试比较说明何者稳定性更好。解:均布荷载作用,受弯构件的弯扭失稳,计算其整体稳定性。(1)、梁的跨中最大弯矩:2max81Mql;梁的几何特征参数如下:mmlllyx12000000;221600101200216300mmA;493310989.4)12002901232300(121mmIx;36910099.81232210989.42mmhIWxx;mmAIixx6.4802160010989.49;47331021.7)101200230016(121mmIy;35710807.430021021.72mmhIWyyy;mmAIiyy8.57216001021.77;61.2078.57120000yyyil;梁的整体稳定系数b,52.012323001612000111hbtl,758.013.069.0b,2928.0235235]0)12324.41661.207(1[10099.832212160061.2074320758.0235])4.4(1[4320262212ybyxybbfhtWAh;mkNfWMxb85.50921510099.82928.06max,mmNmkNlq/33.28/33.281285.5098M822maxmax。(2)、梁的跨中最大弯矩:2max81Mql;梁的几何特征参数如下:4mmlllyx12000000;221600101200220240mmA;493310013.5)12002301240240(121mmIx;36910086.81240210013.52mmhIWxx;473310618.4)101200224020(121mmIy;35710848.3240210618.42mmhIWyyy;mmAIiyy2.462160010618.47;74.2592.46120000yyyil;求整体稳定系数b,807.012402402012000111hbtl,795.0807.013.069.0b,2120.0235235]0)12404.42074.259(1[10086.812402160074.2594320795.0235])4.4(1[4320262212ybyxybbfhtWAh;mkNfWMxb42.35120510086.82120.06max,mmNlq/52.191242.3518M822maxmax。由以上计算结果,可比较得出第一种截面类型的稳定性更好。4.19题:一跨中受集中荷载工字型截面简支梁,钢材为Q235B.F,设计荷载为P=800kN,梁的跨度及几何尺寸如图所示。试按以下两种要求布置梁腹板加劲肋,确定加劲肋间距。①不利用屈曲后强度;②利用屈曲后强度。解:结构受横向荷载作用,故按受弯构件的板件稳定复核计算。①不利用屈曲后强度:5梁翼缘的宽厚比:13235137.10202/)12440(1yftb;梁的腹板高厚比:ywyfthf2351503.133121600235800(受压翼缘扭转未受到约束),故应按计算配置横向加劲肋,但不必配置纵向加劲肋。在集中荷载和支座荷载作用处配置支承加劲肋,其余处配置横向加劲肋,其间距为mma2000(225.15.00ha)。236800220440121600mmA,故简支梁的自重标准值为,mkNgk/889.25.7810368006,设计集中荷载为800kN,故可忽略自重荷载的影响,当然也可考虑自重的影响。4103310564.1)16004284061404(121mmIx;371010790.11640210564.12mmhIWxx;腹板区格A的局部稳定验算:区格A左端的内力:kNl400V,mkNl0M;区格A右端的内力:kNr400V,mkNr8002400M;近似地取校核应力为:276/95.4110907.110800mmNWMxr,230/83.2012160010400mmNthVwl;由于简支梁的受压翼缘扭转未受到约束,25.1871.023515312/160085.0ybf,2/77.201205)]85.0871.0(75.01[)]85.0(75.01[mmNfbcr;62.1157.1235)/(434.541/8.0200ywsfahth,2/72.94120)]8.0157.1(59.01[)]8.0(59.01[mmNfvscr;0.1092.0)72.9483.20()77.20195.41()()(222,2crcrcccr。通理可做腹板区格B的局部稳定验算,腹板区格B的局部稳定验算:区格B左端的内力:kNl400V,mkNl800M;区格B右端的内力:kNr400V,mkNr16004400M;近似地取校核应力为:276/93.6210907.1210)1600800(2mmNWMMxrl,230/83.20121600104002/)(mmNthVVwrl;0.1146.0)72.9483.20()77.20193.62()()(222,2crcrcccr。支承加劲肋的设计:②利用屈曲后强度:4103310564.1)16004284061404(121mmIx;371010790.11640210564.12mmhIWxx;mkNmmNfhAMff292310923.2205810204402291;05.1(截面塑性发展系数),871.0235153/0ywbfth;983.0)85.0871.0(82.01)85.0(82.01b;7997.010564.1212800)983.01(12111033xwceIth;mkNfWMxeeu50.409220510907.1997.005.17;利用腹板屈曲后的强度,故可试取mma4000,0.15.2/0ha,330.12352354000/1600434.54112/1600235/434.541/2200ywsfahth;kNfthVsvwu82.1997330.11201216000;区格A左截面的局部稳定验算:flMM0;kNVl400;136.0182.19975.04002kNVr400;frMmkNM1600136.0182.19975.04002计算支座加劲肋时,由于8.0330.1s,需考虑水平力H的影响。2.1330.1s,222/62.7433.1/1201.1/1.1mmNfsvcr;NhathVhaNHwwcrus1521621)1600/4000(1)16001262.741082.1997()/(1)()/(1232020;封头肋板所需截面积为(假定mme200),mmefHhAe8.11133205200161521621160036130。
本文标题:钢结构第四章答案
链接地址:https://www.777doc.com/doc-1986298 .html