您好,欢迎访问三七文档
转子短路保护技术浏览次数:423日期:2011年2月24日10:29摘要:这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。目前比较典型的crowbar电路有如下几种:(1)混合桥型crowbar电路[9],如图1所示,每个桥臂由控制器件和二极管串联而成。图1混合桥型crowbar(2)igbt型crowbar电路[9],如图2所示,每个桥臂由两个二极管串联,直流侧串入一个igbt器件和一个吸收电阻。图3igbt型crowbar(3)带有旁路电阻的crowbar电路[10],如图3所示,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。图3旁路电阻型crowbar励磁变流器在电网故障期间,与电网和转子绕组一直保持连接,因而在故障期间和故障切除期间,双馈感应发电机都能与电网一起同步运行。当电网故障消除时,关断功率开关,便可将旁路电阻切除,双馈感应发电机转入正常运行。采用crowbar电路的转子短路保护技术存在这样一些缺点:首先,需要增加新的保护装置从而增加了系统成本;另外,电网故障时,虽然励磁变流器和转子绕组得到了保护,但此时按感应电动机方式运行的机组将从系统中吸收大量的无功功率,这将导致电网电压稳定性的进一步恶化,而且传统的crowbar保护电路的投切操作会对系统产生暂态冲击。文献[1]提出了改进方案,该方案与传统方案的区别在于:在转子短路保护电阻切除后,将转子电流控制指令设定为该时刻转子电流的实际值,从而防止由于转子电流控制器指令电流与实际电流不等而引起的暂态冲击。然后通过逐渐改变转子电流指令,实现转子电流控制器的软起动。在转子电流控制器的作用下发电机将逐步恢复到正常运行。这缓解了crowbar保护电路的投切操作对系统产生的暂态冲击,在一定程度上缩短了发电机低电压穿越的过渡时间。但该文献仅限于研究对称故障发电机不脱网运行,未讨论电网故障运行初始条件对不脱网运行效果的影响。(1)电力系统要求双馈感应发电机能在电网故障时保持不脱网运行,并对电网稳定性提供支持。因此在导出发电机基本电磁关系的基础上,分析电网故障过程中发电机内部电磁变量的暂态变化过程,研究适应小值电网故障情况的新励磁控制策略,即出现不严重的电网故障时,电压跌落未严重到一定程度的情况下,通过一定的励磁控制方法,实现发电机和变流器安全度越短时低电压故障,而不必需要触发crowbar电路来进行发电机和变流器的保护。(2)在大值瞬态故障下一般需要使用crowbar这种短接保护措施来保护发电机和变流器。因crowbar电路触发后和电网故障恢复时,一般转子电压和电流会瞬态跳变,然后衰减。利用仿真工具分析比较目前各种crowbar电路的优劣,从成本,可靠性和可能达到的最佳性能指标,工作极端环境适应性等方面进行比较改进,优选出最佳方案,减小电压跌落情况下触发crowbar电路时转子暂态电流跳变幅度。(3)电网运行时经常出现的是不对称故障情况,当电网出现不对称故障时,会使过压、过流的现象更加严重,因为在定子电压中含有负序分量,而负序分量可以产生很高的滑差。然而目前严重故障下进行的研究大都是针对电网对称故障的情况,无法满足实际电网故障情况要求,不能实现工程实际应用。因此,考虑电网不对称故障下,发电机的控制模型和算法有待于进一步改进研究。
本文标题:转子短路保护技术
链接地址:https://www.777doc.com/doc-1989723 .html