您好,欢迎访问三七文档
1问答题参考答案绪论1.什么是混凝土结构?根据混凝土中添加材料的不同通常分哪些类型?答:混凝土结构是以混凝土材料为主,并根据需要配置和添加钢筋、钢骨、钢管、预应力钢筋和各种纤维,形成的结构,有素混凝土结构、钢筋混凝土结构、钢骨混凝土结构、钢管混凝土结构、预应力混凝土结构及纤维混凝土结构。混凝土结构充分利用了混凝土抗压强度高和钢筋抗拉强度高的优点。2.钢筋与混凝土共同工作的基础条件是什么?答:混凝土和钢筋协同工作的条件是:(1)钢筋与混凝土之间产生良好的粘结力,使两者结合为整体;(2)钢筋与混凝土两者之间线膨胀系数几乎相同,两者之间不会发生相对的温度变形使粘结力遭到破坏;3.混凝土结构有哪些优缺点?答:优点:(1)可模性好;(2)强价比合理;(3)耐火性能好;(4)耐久性能好;(5)适应灾害环境能力强,整体浇筑的钢筋混凝土结构整体性好,对抵抗地震、风载和爆炸冲击作用有良好性能;(6)可以就地取材。钢筋混凝土结构的缺点:如自重大,不利于建造大跨结构;抗裂性差,过早开裂虽不影响承载力,但对要求防渗漏的结构,如容器、管道等,使用受到一定限制;现场浇筑施工工序多,需养护,工期长,并受施工环境和气候条件限制等。第2章钢筋和混凝土的力学性能2.我国用于钢筋混凝土结构的钢筋有几种?我国热轧钢筋的强度分为几个等级?答:目前我国用于钢筋混凝土结构和预应力混凝土结构的钢筋主要品种有钢筋、钢丝和钢绞线。根据轧制和加工工艺,钢筋可分为热轧钢筋、热处理钢筋和冷加工钢筋。热轧钢筋分为热轧光面钢筋HPB235、热轧带肋钢筋HRB335、HRB400、余热处理钢筋RRB400(K20MnSi,符号,Ⅲ级)。热轧钢筋主要用于钢筋混凝土结构中的钢筋和预应力混凝土结构中的非预应力普通钢筋。3.在钢筋混凝土结构中,宜采用哪些钢筋?答:钢筋混凝土结构及预应力混凝土结构的钢筋,应按下列规定采用:(1)普通钢筋宜采用HRB400级和HRB335级钢筋,也可采用HPB235级和RRB400级钢筋;(2)预应力钢筋宜采用预应力钢绞线、钢丝,也可采用热处理钢筋。4.简述混凝土立方体抗压强度。答:混凝土标准立方体的抗压强度,我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)规定:边长为150mm的标准立方体试件在标准条件(温度20±3℃,相对温度≥90%)下养护28天后,以标准试验方法(中心加载,加载速度为0.3~1.0N/mm2/s),试件上、下表面不涂润滑剂,连续加载直至试件破坏,测得混凝土抗压强度为混凝土标准立方体的抗压强度fck,单位N/mm2。AFfckfck——混凝土立方体试件抗压强度;F——试件破坏荷载;A——试件承压面积。5.简述混凝土轴心抗压强度。答:我国《普通混凝土力学性能试验方法标准》(GB/T50081-2002)采用150mm×150mm×300mm棱柱体作为混凝土轴心抗压强度试验的标准试件,混凝土试件轴心抗压强度2AFfcpfcp——混凝土轴心抗压强度;F——试件破坏荷载;A——试件承压面积。9.什么叫混凝土徐变?混凝土徐变对结构有什么影响?答:在不变的应力长期持续作用下,混凝土的变形随时间而缓慢增长的现象称为混凝土的徐变。徐变对钢筋混凝土结构的影响既有有利方面又有不利方面。有利影响,在某种情况下,徐变有利于防止结构物裂缝形成;有利于结构或构件的内力重分布,减少应力集中现象及减少温度应力等。不利影响,由于混凝土的徐变使构件变形增大;在预应力混凝土构件中,徐变会导致预应力损失;徐变使受弯和偏心受压构件的受压区变形加大,故而使受弯构件挠度增加,使偏压构件的附加偏心距增大而导致构件承载力的降低。10.钢筋与混凝土之间的粘结力是如何组成的?答:试验表明,钢筋和混凝土之间的粘结力或者抗滑移力,由四部分组成:(1)化学胶结力:来源于浇注时水泥浆体向钢筋表面氧化层的渗透和养护过程中水泥晶体的生长和硬化,取决于水泥的性质和钢筋表面的粗糙程度。(2)摩擦力:它取决于混凝土发生收缩、荷载和反力等对钢筋的径向压应力、钢筋和混凝土之间的粗糙程度等。钢筋和混凝土之间的挤压力越大、接触面越粗糙,则摩擦力越大。(3)机械咬合力:取决于混凝土的抗剪强度。变形钢筋的横肋会产生这种咬合力,它的咬合作用往往很大,是变形钢筋粘结力的主要来源,是锚固作用的主要成份。(4)钢筋端部的锚固力:一般是用在钢筋端部弯钩、弯折,在锚固区焊接钢筋、短角钢等机械作用来维持锚固力。各种粘结力中,化学胶结力较小;光面钢筋以摩擦力为主;变形钢筋以机械咬合力为主。第2章轴心受力构件承载力2.轴心受压构件设计时,纵向受力钢筋和箍筋的作用分别是什么?答:纵筋的作用:①与混凝土共同承受压力,提高构件与截面受压承载力;②提高构件的变形能力,改善受压破坏的脆性;③承受可能产生的偏心弯矩、混凝土收缩及温度变化引起的拉应力;④减少混凝土的徐变变形。横向箍筋的作用:①防止纵向钢筋受力后压屈和固定纵向钢筋位置;②改善构件破坏的脆性;③当采用密排箍筋时还能约束核芯内混凝土,提高其极限变形值。6.简述轴心受拉构件的受力过程和破坏过程?答:第Ⅰ阶段——加载到开裂前此阶段钢筋和混凝土共同工作,应力与应变大致成正比。在这一阶段末,混凝土拉应变达到极限拉应变,裂缝即将产生。第Ⅱ阶段——混凝土开裂后至钢筋屈服前裂缝产生后,混凝土不再承受拉力,所有的拉力均由钢筋来承担,这种应力间的调整称为截面上的应力重分布。第Ⅱ阶段是构件的正常使用阶段,此时构件受到的使用荷载大约为构件破坏时荷载的50%—70%,构件的裂缝宽度和变形的验算是以此阶段为依据的。第Ⅲ阶段——钢筋屈服到构件破坏当加载达到某点时,某一截面处的个别钢筋首先达到屈服,裂缝迅速发展,这时荷载稍稍增加,甚至不增加都会导致截面上的钢筋全部达到屈服(即荷载达到屈服荷载Ny时)。评判轴心受拉破坏的标准并不是构件拉断,而是钢筋屈服。正截面强度计算是以此阶段为依据的。3第4章受弯构件正截面承载力1.受弯构件适筋梁从开始加荷至破坏,经历了哪几个阶段?各阶段的主要特征是什么?各个阶段是哪种极限状态的计算依据?答:适筋受弯构件正截面工作分为三个阶段。第Ⅰ阶段荷载较小,梁基本上处于弹性工作阶段,随着荷载增加,弯矩加大,拉区边缘纤维混凝土表现出一定塑性性质。第Ⅱ阶段弯矩超过开裂弯矩Mcrsh,梁出现裂缝,裂缝截面的混凝土退出工作,拉力由纵向受拉钢筋承担,随着弯矩的增加,受压区混凝土也表现出塑性性质,当梁处于第Ⅱ阶段末Ⅱa时,受拉钢筋开始屈服。第Ⅲ阶段钢筋屈服后,梁的刚度迅速下降,挠度急剧增大,中和轴不断上升,受压区高度不断减小。受拉钢筋应力不再增加,经过一个塑性转动构成,压区混凝土被压碎,构件丧失承载力。第Ⅰ阶段末的极限状态可作为其抗裂度计算的依据。第Ⅱ阶段可作为构件在使用阶段裂缝宽度和挠度计算的依据。第Ⅲ阶段末的极限状态可作为受弯构件正截面承载能力计算的依据。2.钢筋混凝土受弯构件正截面有哪几种破坏形式?其破坏特征有何不同?答:钢筋混凝土受弯构件正截面有适筋破坏、超筋破坏、少筋破坏。梁配筋适中会发生适筋破坏。受拉钢筋首先屈服,钢筋应力保持不变而产生显著的塑性伸长,受压区边缘混凝土的应变达到极限压应变,混凝土压碎,构件破坏。梁破坏前,挠度较大,产生较大的塑性变形,有明显的破坏预兆,属于塑性破坏。梁配筋过多会发生超筋破坏。破坏时压区混凝土被压坏,而拉区钢筋应力尚未达到屈服强度。破坏前梁的挠度及截面曲率曲线没有明显的转折点,拉区的裂缝宽度较小,破坏是突然的,没有明显预兆,属于脆性破坏,称为超筋破坏。梁配筋过少会发生少筋破坏。拉区混凝土一旦开裂,受拉钢筋即达到屈服,并迅速经历整个流幅而进入强化阶段,梁即断裂,破坏很突然,无明显预兆,故属于脆性破坏。2.什么叫最小配筋率?它是如何确定的?在计算中作用是什么?答:最小配筋率是指,当梁的配筋率ρ很小,梁拉区开裂后,钢筋应力趋近于屈服强度,这时的配筋率称为最小配筋率ρmin。是根据Mu=Mcy时确定最小配筋率。控制最小配筋率是防止构件发生少筋破坏,少筋破坏是脆性破坏,设计时应当避免。1.什么是双筋截面?在什么情况下才采用双筋截面?答:在单筋截面受压区配置受力钢筋后便构成双筋截面。在受压区配置钢筋,可协助混凝土承受压力,提高截面的受弯承载力;由于受压钢筋的存在,增加了截面的延性,有利于改善构件的抗震性能;此外,受压钢筋能减少受压区混凝土在荷载长期作用下产生的徐变,对减少构件在荷载长期作用下的挠度也是有利的。双筋截面一般不经济,但下列情况可以采用:(1)弯矩较大,且截面高度受到限制,而采用单筋截面将引起超筋;(2)同一截面内受变号弯矩作用;(3)由于某种原因(延性、构造),受压区已配置'sA;(4)为了提高构件抗震性能或减少结构在长期荷载下的变形。9.第二类T形截面受弯构件正截面承载力计算的基本公式及适用条件是什么?为什么要规定适用条件?答:第二类型T形截面:(中和轴在腹板内)sycffcAfbxfhbbf1''1)(4)2()()2('0''101fffccuhhhbbfxhbxfM适用条件:b规定适用条件是为了避免超筋破坏,而少筋破坏一般不会发生。第5章受弯构件斜截面承载力1.斜截面破坏形态有几类?分别采用什么方法加以控制?答:(1)斜截面破坏形态有三类:斜压破坏,剪压破坏,斜拉破坏(2)斜压破坏通过限制最小截面尺寸来控制;剪压破坏通过抗剪承载力计算来控制;斜拉破坏通过限制最小配箍率来控制;2.影响斜截面受剪承载力的主要因素有哪些?答:(1)剪跨比的影响,随着剪跨比的增加,抗剪承载力逐渐降低;(2)混凝土的抗压强度的影响,当剪跨比一定时,随着混凝土强度的提高,抗剪承载力增加;(3)纵筋配筋率的影响,随着纵筋配筋率的增加,抗剪承载力略有增加;(4)箍筋的配箍率及箍筋强度的影响,随着箍筋的配箍率及箍筋强度的增加,抗剪承载力增加;(5)斜裂缝的骨料咬合力和钢筋的销栓作用;(6)加载方式的影响;(7)截面尺寸和形状的影响;3.斜截面抗剪承载力为什么要规定上、下限?具体包含哪些条件?答:斜截面抗剪承载力基本公式的建立是以剪压破坏为依据的,所以规定上、下限来避免斜压破坏和斜拉破坏。5.什么是鸭筋和浮筋?浮筋为什么不能作为受剪钢筋?答:单独设置的弯起钢筋,两端有一定的锚固长度的叫鸭筋,一端有锚固,另一端没有的叫浮筋。由于受剪钢筋是受拉的,所以不能设置浮筋。第6章受扭构件承载力1.钢筋混凝土纯扭构件中适筋纯扭构件的破坏有什么特点?答:当纵向钢筋和箍筋的数量配置适当时,在外扭矩作用下,混凝土开裂并退出工作,钢筋应力增加但没有达到屈服点。随着扭矩荷载不断增加,与主斜裂缝相交的纵筋和箍筋相继达到屈服强度,同时混凝土裂缝不断开展,最后形成构件三面受拉开裂,一面受压的空间扭曲破坏面,进而受压区混凝土被压碎而破坏,这种破坏与受弯构件适筋梁类似,属延性破坏,以适筋构件受力状态作为设计的依据。4.简述素混凝土纯扭构件的破坏特征。答:素混凝土纯扭构件在纯扭状态下,杆件截面中产生剪应力。对于素混凝土的纯扭构件,当主拉应力产生的拉应变超过混凝土极限拉应变时,构件即开裂。第一条裂缝出现在构件的长边(侧面)中点,与构件轴线成45°方向,斜裂缝出现后逐渐变宽以螺旋型发展到构件顶面和底面,形成三面受拉开裂,一面受压的空间斜曲面,直到受压侧面混凝土压坏,破坏面是一空间扭曲裂面,构件破坏突然,为脆性破坏。第7章偏心受力构件承载力1.判别大、小偏心受压破坏的条件是什么?大、小偏心受压的破坏特征分别是什么?答:(1)b,大偏心受压破坏;b,小偏心受压破坏;(2)破坏特征:大偏心受压破坏:破坏始自于远端钢筋的受拉屈服,然后近端混凝土受压破坏;5小偏心受压破坏:构件破坏时,混凝土受压破坏,但远端的钢筋并未屈服;2.偏心受压短柱和长柱有何本质的区别?偏心距增大系数的物理意义是什么?答:(1)偏心受压短柱和长柱有何本质的区别在于,长柱偏心受压后产生不可忽略的纵向弯曲,引起二阶弯矩。(2)偏心距增大系数的物理意义是,考虑长柱偏心受压后产生的二阶弯矩对受压承载力的影
本文标题:问答题参考答案
链接地址:https://www.777doc.com/doc-1996924 .html