您好,欢迎访问三七文档
第五章数列(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.(2013·山西诊断)正项等比数列{an}中,若a2a18=16,则log2a10等于(A)A.2B.4C.8D.16依题意得,a2a18=a210=16,又a100,因此a10=4,log2a10=log24=2.2.(2013·荆州质检)已知数列{an}是等比数列,a4=4,a7=12,则公比q等于(D)A.-12B.-2C.2D.12由题知a7a4=q3=124=18,∴q=12.3.(2013·全国高考)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于(C)A.3B.4C.5D.6Sm-Sm-1=am=2,Sm+1-Sm=am+1=3,∴d=1,Sm=ma1+m(m-1)2d=0,解得a1=-m-12,am=a1+(m-1)d=-m-12+m-1=2,解得m=5.4.已知等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的通项an等于(A)A.2n-3B.2n+1C.2n-5D.2n-1依题意得2(a+1)=(a-1)+(2a+3),解得a=0,故首项a1=a-1=-1,公差d=(a+1)-(a-1)=2,故此数列的通项an=-1+(n-1)×2=2n-3.5.设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2·a4=1,S3=7,则S5等于(B)A.334B.314C.172D.152依题意知,a21q4=1,又a10,q0,则a1=1q2.又S3=a1(1+q+q2)=7,于是有1q+31q-2=0,因此有q=12,a1=4,∴S5=4×1-1251-12=314.6.△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,且c=2a,则cosB等于(A)A.34B.23C.24D.14∵三边a,b,c成等比数列,∴b2=ac,又c=2a,∴b=2a,∴cosB=a2+c2-b22ac=34.7.(2013·江西七校联考)设各项都是正数的等比数列{an},Sn为前n项和,且S10=10,S30=70,那么S40等于(A)A.150B.-200C.150或-200D.400或-50依题意,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30.又S200,因此S20=30,S20-S10=20,S30-S20=40,S40-S30=80,则S40=80+70=150.8.(2012·全国高考)已知{an}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于(D)A.7B.5C.-5D.-7设数列{an}的公比为q,由a4+a7=2,a5·a6=a4·a7=-8,得a4=4,a7=-2或a4=-2,a7=4,∴a1=-8,q3=-12或a1=1,q3=-2,∴a1=-8,a10=1或a1=1,a10=-8,∴a1+a10=-7.9.(2013·江南十校联考)已知正项等差数列{an}满足:an+1+an-1=a2n(n≥2),等比数列{bn}满足:bn+1bn-1=2bn(n≥2),则log2(a2+b2)等于(C)A.-1或2B.0或2C.2D.1由题意可知,an+1+an-1=2an=a2n,解得an=2(n≥2)(由于数列{an}每项都是正数),又bn+1bn-1=b2n=2bn(n≥2),∴bn=2(n≥2),log2(a2+b2)=log24=2.10.已知数列{an}满足a1=1,且an=12an-1+12n(n≥2且n∈N*),则数列{an}的通项公式为an等于(B)A.2nn+1B.n+12nC.n+1D.(n+1)2n由an=12an-1+12n(n≥2,且n∈N*)得2nan=2n-1·an-1+1,∴数列{2nan}是首项为2,公差为1的等差数列,∴2nan=2+(n-1)×1=n+1,故an=n+12n.11.(2013·浙江名校联考)已知每项均大于零的数列{an}中,首项a1=1且前n项和Sn满足SnSn-1-Sn-1Sn=2SnSn-1(n∈N*且n≥2),则a81等于(C)A.638B.639C.640D.641由已知SnSn-1-Sn-1Sn=2SnSn-1,Sn>0可得,Sn-Sn-1=2,∴{Sn}是以1为首项,2为公差的等差数列,故Sn=2n-1,Sn=(2n-1)2,∴a81=S81-S80=1612-1592=640.12.(2013·昆明调研)已知数列{an}满足an+1=an-an-1(n≥2),a1=1,a2=3,记Sn=a1+a2+…+an,则下列结论正确的是(A)A.a100=-1,S100=5B.a100=-3,S100=5C.a100=-3,S100=2D.a100=-1,S100=2依题意an+2=an+1-an=-an-1,即an+3=-an,an+6=-an+3=an,故数列{an}是以6为周期的数列,a1+a2+a3+a4+a5+a6=(a1+a4)+(a2+a5)+(a3+a6)=0.注意到100=6×16+4,因此有a100=a4=-a1=-1,S100=16(a1+a2+…+a6)+(a1+a2+a3+a4)=a2+a3=a2+(a2-a1)=2×3-1=5.二、填空题(每小题5分,共20分)13.已知等差数列{an}的首项a1=1,公差d=2,其前n项和Sn满足Sk+2-Sk=24,则k=__5__.数列{an}的前n项和Sn=n+n(n-1)2×2=n2,由Sk+2-Sk=24,可得(k+2)2-k2=24,解得k=5.14.已知公差不为0的等差数列{an}满足a1,a3,a4成等比数列,Sn为{an}的前n项和,则S3-S2S5-S3的值为__2__.设数列{an}的公差为d,则(a1+2d)2=a1(a1+3d),即a21+4a1d+4d2=a21+3a1d,解得a1=-4d(舍去d=0).S3-S2S5-S3=a3a4+a5=-4d+2d-4d+3d-4d+4d=2.15.(2013·北京朝阳综合练习)在等比数列{an}中,2a3-a2a4=0,则a3=__2__,{bn}为等差数列,且b3=a3,则数列{bn}的前5项和等于__10__.在等比数列中2a3-a2a4=2a3-a23=0,解得a3=2.在等差数列中b3=a3=2,∴S5=5(b1+b5)2=5×2b32=5b3=5×2=10.16.在各项均为正数的等比数列{an}中,已知a3+a4=11a2a4,且它的前2n项的和等于它的前2n项中偶数项之和的11倍,则数列{an}的通项公式an=__102-n__.设等比数列{an}的公比为q,前2n项和为S2n,前2n项中偶数项之和为Tn,由题意知q≠1,则S2n=a1(1-q2n)1-q,Tn=a1q(1-q2n)1-q2.由题意可知S2n=11Tn,即a1(1-q2n)1-q=11a1q(1-q2n)1-q2,解得q=110(或令n=1,则S2=11T1,即a1+a2=11a2,化简得a1=10a2,故q=110).又a3+a4=11a2a4,∴a1q2+a1q3=11a21q4,化简得1+q=11a1q2,将q=110代入可得a1=10,故an=a1qn-1=110n-2=102-n.三、解答题(共70分)17.(10分)求数列{(2n-1)2}的前n项和Sn.∵(2n-1)2=4n2-4n+1(2分)∴Sn=12+32+52+…+(2n-1)2(4分)=4(12+22+32+…+n2)-4(1+2+3+…+n)+n(7分)=4×16n(n+1)(2n+1)-4×12n(n+1)+n=13n(4n2-1).(10分)18.(10分)(2013·济南模拟)正项等比数列{an}的前n项和为Sn,a4=16,且a2,a3的等差中项为S2.(1)求数列{an}的通项公式;(2)设bn=na2n-1,求数列{bn}的前n项和Tn.(1)设等比数列{an}的公比为q(q>0),由题意,得a1q3=16,a1q+a1q2=2(a1+a1q),解得a1=2,q=2.(4分)∴an=2n.(6分)(2)∵bn=na2n-1=n22n-1,∴Tn=12+223+325+427+…+n22n-1,14Tn=123+225+327+…+n-122n-1+n22n+1,(8分)∴34Tn=12+123+125+127+…+122n-1-n22n+1=121-14n1-14-n22n+1=23-4+3n3·22n+1,故Tn=89-4+3n9·22n-1.(10分)19.(12分)(2013·江苏高考)设{an}是首项为a,公差为d的等差数列(d≠0),Sn是其前n项和.记bn=nSnn2+c,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:Snk=n2Sk(k,n∈N*);(2)若{bn}是等差数列,证明:c=0.由题设,Sn=na+n(n-1)2d.(1)由c=0,得bn=Snn=a+n-12d.又b1,b2,b4成等比数列,∴b22=b1b4,即a+d22=aa+32d,化简得d2-2ad=0.∵d≠0,∴d=2a.因此,对于所有的m∈N*,有Sm=m2a.从而对于所有的k,n∈N*,有Snk=(nk)2a=n2k2a=n2Sk.(5分)(2)设数列{bn}的公差是d1,则bn=b1+(n-1)d1,即nSnn2+c=b1+(n-1)d1,n∈N*,代入Sn的表达式,整理得,对于所有的n∈N*,有d1-12dn3+(b1-d1-a+12d)n2+cd1n=c(d1-b1).(7分)令A=d1-12d,B=b1-d1-a+12d,D=c(d1-b1),则对于所有的n∈N*,有An3+Bn2+cd1n=D.(*)在(*)式中分别取n=1,2,3,4,得A+B+cd1=8A+4B+2cd1=27A+9B+3cd1=64A+16B+4cd1,从而有7A+3B+cd1=0,①19A+5B+cd1=0,②37A+7B+cd1=0,③解得A=0,B=0,cd1=0.即d1-12d=0,b1-d1-a+12d=0,cd1=0.(9分)若d1=0,则由d1-12d=0,得d=0,与题设矛盾,∴d1≠0.又cd1=0,∴c=0.(12分)20.(12分)(2013·东北三校模拟)已知数列{an}的前n项和Sn满足Sn=2an+(-1)n(n∈N*).(1)求数列{an}的前三项a1,a2,a3;(2)求证:数列an+23(-1)n为等比数列,并求出{an}的通项公式.(1)在Sn=2an+(-1)n(n∈N*)中分别令n=1,2,3得a1=2a1-1,a1+a2=2a2+1,a1+a2+a3=2a3-1,解得a1=1,a2=0,a3=2.(5分)(2)由Sn=2an+(-1)n(n∈N*)得Sn-1=2an-1+(-1)n-1(n≥2),两式相减得an=2an-1-2(-1)n(n≥2),an=2an-1-43(-1)n-23(-1)n=2an-1+43(-1)n-1-23(-1)n(n≥2),∴an+23(-1)n=2an-1+23(-1)n-1(n≥2).(9分)故数列an+23(-1)n是以a1-23=13为首项,公比为2的等比数列.∴an+23(-1)n=13×2n-1,∴an=13×2n-1-23×(-1)n=2n-13-23(-1)n.(12分)21.(12分)已知数列{an}是公差不为0
本文标题:阶段测试卷第五章
链接地址:https://www.777doc.com/doc-2000024 .html