您好,欢迎访问三七文档
1高一数学每日一题1.数列{an}满足a1=2a,an+1=2a-a2an(n∈N*),其中a是不为零的常数,令bn=1an-a.(1)数列{bn}构成什么数列并证明你结论;(2)求数列{an}的通项公式.2.知函数f(x)=3xx+3,数列{xn}通项由xn=f(xn-1)(n≥2,且n∈N*)确定.(1)求证1xn是等差数列;(2)当x1=12时,求x100.23.在等差数列{an}中,(1)已知a2+a3+a10+a11=48,求a6+a7;(2)已知a2+a3+a4+a5=34,a2·a5=52,求公差d.4.已知数列{an}满足a1=15,且当n1,n∈N*时,有an-1an=2an-1+11-2an.(1)求证:数列{1an}为等差数列;(2)试问a1a2是否是数列{an}中的项?如果是,是第几项;如果不是,请说明理由.35.已知数列{an}的前n项和Sn=-32n2+2052n,求数列{|an|}的前n项和Tn.6.已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3·a4=117,a2+a5=22.(1)求数列{an}的通项公式an;(2)若数列{bn}是等差数列,且bn=Snn+c,求非零常数c.47.设等差数列{an}的前n项和为Sn,已知a3=12,且S120,S130.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.8.数列{an}满足a1=1,12an+1=12an+1(n∈N*).(1)求证:数列{1an}是等差数列;(2)设Tn=a1a2+a2a3+…+anan+1,若Tn≥a恒成立,求a的取值范围.59.已知各项均为正数的数列{an}满足a2n+1-an+1an-2a2n=0(n∈N*),且a3+2是a2、a4的等差中项,求{an}的通项公式.10.已知数列{an}:a1,a2,a3,…,an,…构成一个新数列:a1,(a2-a1),…(an-an-1),…此数列是首项为1,公比为13的等比数列.(1)求数列{an}的通项;(2)求数列{an}的前n项和Sn.611.在数列{an}中,a1=1,an+1=2an+2n.(1)设bn=an2n-1,证明:数列{bn}是等差数列.(2)求数列{an}的前n项和Sn.12.若Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列.(1)求数列S1,S2,S4的公比;(2)若S2=4,求{an}的通项公式.713.已知数列{an}的前n项和为Sn,通项公式an满足Sn+an=12(n2+3n-2),求通项公式an.14.已知数列{an}的前n项和为Sn,且a1=1,a2=6,Sn=3Sn-1-2Sn-2+2n(n≥3).(1)求证:{an2n}(n∈N*)是等差数列;(2)求Sn.815.设一元二次方程anx2-an+1x+1=0(n∈N*)有两个根x1,x2,满足6x1-2x1x2+6x2=3,且a1=76.(1)用an表示an+1;(2)求{an}的通项公式;(3)求{an}的前n项之和Sn.9每日一练答案1[解](1)数列{bn}构成等差数列.证明如下:∵bn=1an-a,∴bn+1=1an+1-a,∴an=1bn+a,an+1=1bn+1+a,∴1bn+1+a=2a-a21bn+a,即1bn+1=a-a2bn1+abn=a1+abn.∴bn+1=bn+1a,即bn+1-bn=1a,∴数列{bn}是等差数列.(2)由(1)可知b1=1a1-a=1a,∴bn=1a+(n-1)1a=na,∴1an-a=na,即an=n+1na.2[解](1)xn=f(xn-1)=3xn-1xn-1+3(x≥2,n∈N*),∴1xn=xn-1+33xn-1=13+1xn-1,1xn-1xn-1=13(n≥2,n∈N*).∴1xn是等差数列.(2)由(1)知1xn的公差为13.又x1=12,∴1xn=1x1+(n-1)·13,∴1x100=2+(100-1)×13=35,∴x100=135.3[解]根据已知条件a2+a3+a10+a11=48,得2(a6+a7)=48,∴a6+a7=24.(2)由a2+a3+a4+a5=34,得2(a2+a5)=34,得a2+a5=17.解:a2·a5=52,a2+a5=17.得a2=4,a5=13;或a2=13,a5=4.∴d=a5-a25-2=13-43=3,或d=a5-a25-2=4-133=-3.4[解](1)证明:当n≥2时,an-1an=2an-1+11-2an,得an-1-an=4an-1an.两边同除以an-1an,得1an-1an-1=4,即1an-1an-1=4,对n1且n∈N*时成立,∴{1an}是以1a1=5为首项,以d=4为公差的等差数列.10(2)由(1)得1an=1a1+(n-1)d=4n+1,∴an=14n+1,∴a1a2=15×19=145.假设a1a2是数列{an}中的第t项,则at=14t+1=145,解得t=11∈N*,∴a1a2是数列{an}中的第11项.5[解]a1=S1=-32×12+2052×1=101.当n≥2时,an=Sn-Sn-1=(-32n2+2052n)-[-32(n-1)2+2052(n-1)]=-3n+104.∵n=1也适合上式,∴数列通项公式为an=-3n+104.由an=-3n+104≥0得n≤34.7,即当n≤34时,an0,当n≥35时,an0.(1)当n≤34时,Tn=|a1|+|a2|+…+|an|=a1+a2+…+an=Sn=-32n2+2052n.(2)当n≥35时,Tn=|a1|+|a2|+…+|a34|+|a35|+…+|an|=(a1+a2+…+a34)-(a35+a36+…+an)=2(a1+a2+…+a34)-(a1+a2+…+an)=2S34-Sn=2(-32×342+2052×34)-(-32n2+2052n)=32n2-2052n+3502.故Tn=-32n2+2052n,n≤34,32n2-2052n+3502,n≥35.6[解](1){an}为等差数列,∵a3+a4=a2+a5=22,又a3·a4=117,∴a3,a4是方程x2-22x+117=0的两个根,又公差d0,∴a3a4,∴a3=9,a4=13.∴a1+2d=9a1+3d=13,∴a1=1d=4,∴an=4n-3.(2)由(1)知,Sn=n·1+nn-2·4=2n2-n,∴bn=Snn+c=2n2-nn+c,∴b1=11+c,b2=62+c,b3=153+c,∵{bn}是等差数列,∴2b2=b1+b3,∴2c2+c=0,∴c=-12(c=0舍去).7[解](1)∵a3=12,∴a1=12-2d,∵S120,S130,∴12a1+66d013a1+78d0,即24+7d03+d0,∴-247d-3.(2)∵S120,S130,11∴a1+a120a1+a130,∴a6+a70a70.∴a60,又由(1)知,d0,∴数列前6项为正,从第7项起为负.∴数列前6项和最大.8[解](1)由12an+1=12an+1可得:1an+1=1an+2,∴1an+1-1an=2,∴数列{1an}是等差数列.(2)由(1)知1an=1a1+2(n-1)=2n-1.∴an=12n-1,∴anan+1=1n-n+=12(12n-1-12n+1),∴Tn=a1a2+a2a3+…+anan+1=12[(1-13)+(13-15)+…+(12n-1-12n+1)]=12(1-12n+1)∵数列{Tn}是递增数列,∴当n=1时,Tn有最小值T1=13.∴a≤13.∴a的取值范围是(-∞,13].9[解]∵a2n+1-an+1·an-2a2n=0,∴(an+1+an)(an+1-2an)=0,∵{an}中各项均为正数,即an+1+an0,∴an+1=2an,即{an}为公比为2的等比数列.又a3+2是a2、a4的等差中项,即a2+a4=2a3+4,即2a1+8a1=8a1+4,∴a1=2,∴{an}的通项公式为an=2n.10[解](1)an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)=1+13+(13)2+…+(13)n-1=32[1-(13)n].(2)Sn=a1+a2+a3+…+an=32(1-13)+32[1-(13)2]+…+32[1-(13)n]=32{n-[13+(13)2+…+(13)n]}=32n-34[1-(13)n]=34(2n-1)+14(13)n-1.11(1)[证明]由an+1=2an+2n,两边同除以2n,∴an+12n=an2n-1+1.12∴an+12n-an2n-1=1,即bn+1-bn=1,∴{bn}为等差数列.(2)[解]由第(1)问得,an2n-1=120+(n-1)×1=n.∴an=n·2n-1,∴Sn=20+2×21+3×22+…+n·2n-1.①∴2Sn=21+2×22+…+(n-1)2n-1+n·2n.②∴①-②得-Sn=20+21+22+…+2n-1-n·2n=1-2n1-2-n·2n=(1-n)·2n-1.∴Sn=(n-1)·2n+1.12[解](1)设数列{an}的公差为d,由题意,得S22=S1·S4,所以(2a1+d)2=a1(4a1+6d).因为d≠0,所以d=2a1.故公比q=S2S1=4.(2)因为S2=4,d=2a1,S2=2a1+2a1=4a1,所以a1=1,d=2.因此an=a1+(n-1)d=2n-1.13[解]本题考查数列通项与前n项和的关系:an=Sn-Sn-1(n≥2).∵Sn+an=12(n2+3n-2),∴Sn-1+an-1=12[(n-1)2+3(n-1)-2](n≥2).两式相减得:2an-an-1=n+1(n≥2),变形为:2(an-n)=an-1-n+1,∴数列{an-n}是首项为a1-1公比为12的等比数列,∴an-n=(a1-1)·12n-1.又S1+a1=1,a1=12,∴an=n-12n.14(1)[证明]由Sn=3Sn-1-2Sn-2+2n(n≥3)13可得Sn-Sn-1=2(Sn-1-Sn-2)+2n,即an=2an-1+2n,所以an2n-an-12n-1=1(n≥3).又a1=1,a2=6,所以a222-a12=1,所以{an2n}(n∈N*)是等差数列,首项为12,公差为1.(2)求Sn.(2)[解]由(1)可得an2n=n-12,即an=n·2n-2n-1.令Tn=1×2+2×22+3×23+…+(n-1)×2n-1+n×2n,①则2Tn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,②①-②可得-Tn=2+22+23+…+2n-n×2n+1=2n+1(1-n)-2,所以Tn=(n-1)2n+1+2,再令Mn=20+21+22+…+2n-1=2n-12-1=2n-1,∴Sn=Tn-Mn所以Sn=(n-1)2n+1+2-2n+1=(2n-3)2n+3.15[解](1)由x1,x2是方程anx2-an+1x+1=0的两个根,得x1+x2=an+1an,x1x2=1an,∵6(x1+x2)-2x1x2=3,∴6×an+1an-2×1an=3.即an+1=12an+13.(2)由an+1=12an+13,得an+1-23=12(an-23),则{an-23}是以a1-23=12为首项,公比为12的等比数列,an-23=(12)n,∴an=(12)n+23(n∈N*).(3)Sn=a1+a2+…+an=[(12)1+23]+[(12)2+23]+…+[(12)n+23]=1-12n+23n.
本文标题:高一数学每日一题
链接地址:https://www.777doc.com/doc-2001625 .html