您好,欢迎访问三七文档
论述通信网络技术的现状与发展趋势姓名:曹伟学号:01121278班级:011213通信网络技术的现状与发展趋势纵观通信的发展分为以下三个阶段:第一阶段是语言和文字通信阶段。在这一阶段,通信方式简单,内容单一。第二阶段是电通信阶段。1837年,莫尔斯发明电报机,并设计莫尔斯电报码。1876年,贝尔发明电话机。这样,利用电磁波不仅可以传输文字,还可以传输语音,由此大大加快了通信的发展进程。1895年,马可尼发明无线电设备,从而开创了无线电通信发展的道路。第三阶段是电子信息通信阶段。从总体上看,通信技术实际上就是通信系统和通信网的技术。通信系统是指点对点通所需的全部设施,而通信网是由许多通信系统组成的多点之间能相互通信的全部设施。现代的主要通信技术有数字通信技术,程控交换技术,信息传输技术,通信网络技术,数据通信与数据网,ISDN与ATM技术,宽带IP技术,接入网与接入技术。(1)数字通信技术:用数字信号作为载体来传输消息,或数字信号对载波进行数字调制后再传输的通信方式。抗干扰能力强、通信距离远,通信质量受距离的影响小、保密性好、便于实现通信网的计算机管理(2)程控交换技术:程控电话交换机利用电子计算机技术,用预先编好的程序控制电话的接续工作。数字交换机处理速度快,体积小,容量大,灵活性强,服务功能多,还能实现传真,数据,图像通信等交换(3)通信网络技术:通信网是一种由通信端点、节(结)点和传输链路相互有机地连接起来,以实现在两个或更多的规定通信端点之间提供连接或非连接传输的通信体系。通信网按功能与用途不同,一般可分为物理网、业务网和支撑管理网等三种。(4)数据通信与数据网:数据通信是以“数据”为业务的通信系统,数据是预先约定好的具有某种含义的数字、字母或符号以及它们的组合。通过传输信道将数据终端与计算机联结起来,而使不同地点的数据终端实现软、硬件和信息资源的共享。(5)ISDN与ATM技术:ISDN采用数字传输和数字传输技术将电话、传真、数据、图像等多种业务综合在一个统一的数字网络中进行传输和处理。ATM通信指两个互不同步的设备通过计时机制或其他技术进行数据传输。基本上,发送方可以随时传输数据,而接收方必须在信息到达时准备好接收。(6)接入网与接入技术:解决“最后一公里”的通信。接入网是指从本地端到用户终端之间的所有机线设备。具有复用、交叉连接和传输功能,一般不具备交换功能。接入网的接入方式包括铜线(普通电话线)接入、光纤接入、光纤同轴电缆(有线电视电缆)混合接入和无线接入等几种方式。现代通信网的发展:第一阶段从本世纪20年代至40年代,为早期发展阶段。在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。该系统工作频率为2MHz,到40年代提高到30~40MHz可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。第二阶段从40年代中期至60年代初期。在此期间内,公用移动通信业务开始问世。1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。美国贝尔实验室完成了人工交换系统的接续问题。这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。第三阶段从60年代中期至70年代中期。在此期间,美国推出了改进型移动电话系统(1MTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。德国也推出了具有相同技术水平的B网。可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz频段,实现了自动选频与自动接续。现代通信网,又含有传输网,信令网,同步网,电话通信网,移动通信网,等等。下面为这提到的几个做以下概括:(1)、传送网是以光或电为载体传送信息的网络。由具有发送、转移、接收信息功能的各种节点和链路组成。以MSTP/ASON为代表的传送网技术有许多新特点。MSTP在传统SDH基础上,通过IP/ATM等多业务接入能力的引入,在业务接口上提供了以太网类接口和ATM类接口,是一个可以直接同数据业务进行接口的传送平台。在现有网络环境下,MSTP在承载原有TDM业务的同时,可以开展多种高可靠性、大容量的新业务,如以太网专线、点到多点以太网、以太环网等业务;为大客户提供综合接入;实现DSLAM到BRAS的接入与汇聚;作为3G业务的传输手段等。20世纪90年代开始,SDH设备通过同步性能的改善,首次提供了灵活的业务颗粒(如虚容器VC-12和虚容器VC-4)调度能力,将传送网的组网和保护功能发挥的淋漓尽致。因而,SDH技术作为传送网主体技术以其特有的优势在传送网中占据了绝对主导地位,为电信运营商业务的发展发挥了巨大作用。WDM设备则首次拓展了光领域,充分利用光纤通信的波分特性,大大提高了传送网的容量。自20世纪90年代中期商用以来,WDM系统发展极为迅速,已成为实现大容量长途传输的主流手段。不过,现阶段大多数WDM系统主要用在点对点的长途传输上,联网依然在SDH电层上完成。在条件许可和业务需要的情况下,在WDM系统中有业务上下的中间节点可采用OADM设备,从而避免使用昂贵的OTU进行OEO变换,节省网络建设成本,增强网络灵活性。目前具有固定波长上下的OADM已经广泛商用,而能够通过软件配置灵活上下波长的动态可重构OADM(ROADM)也开始步入市场。同时随着160×10Gbit/sDWDM系统的成熟,在业务量大的地区新建WDM系统已越来越多地引入80/160×10Gbit/s的系统。面对电信业务的加速数据化和IP化以及多样化的业务环境,SDH技术加强了支撑数据业务的能力并向多业务平台发展,形成SDH多业务平台(MSTP)。SDH多业务平台的基本思路是将不同的业务,通过VC级联等方式映射进不同的SDH时隙,而SDH设备与二层设备乃至三层分组设备在物理上集成为一个实体,构成具有业务层和传送层一体化的网络节点。作为SDH设备的改进,MSTP所改善的是在用户接口一侧,但是内核一侧却仍然是电路结构。因此,可以说MSTP技术向包处理或IP化的程度不够彻底。随着TDM业务的相对萎缩及“全IP环境”的逐渐成熟,传送设备要从“多业务的接口适应性”转变为“多业务的内核适应性”,分组传送网迎合了这种趋势。(2)、信令网是在电信网的交换节点间,采用共路信令,由信令终端设备和共路信令链路组成的网络。信令网按网络结构的等级可分为无级信令网络和分级信令网两类:1无级信令网。2分级信令网无级信令网是未引入信令转接点的信令网。在无级网中信令点间都采用直联方式,所有的信令点均处于同一等级级别。无级信令网结构比较简单,但有明显的缺点,信令路由都比较少,而信令接续中所要经过的信令点数都比较多;网状网虽无上述缺点,但当信令的数量较大时,局间连接的信令链路数量明显增加。分级信令网也叫水平分级信令网。是引入信令转接点的信令网。二级信令网是采用一级信令转接点的信令网;三级信令网是具有二级信令转接点的信令网,第一级信令转接点称为高级信令转接点(HSTP)或主信令转接点,第二级为低级信令转接点(LSTP)或次信令转接点。分级信令网的一个重要特点是每个信令点发出的信令消息一般需要经过一级或n级信令转接点的转接。比较无级网和分级信令网的结构,分级信令网具有如下的优点:网络所容纳的信令点数多;增加信令点容易;信令路由多、传号传递时延相对较短。因此,分级信令网是国际、国内信令网常采用的形式。我国信令网采用三级。第一级是信令网的最高级,称为高级信令转接点(HSTP),第二级是低级信令转接点(LSTP),第三级为信令点(SP)。信令点由各种交换局和特种服务中心(业务控制点、网管中心等)组成。同步网是产生时间或频率基准,用来提供基准定时信号的网络。(3)、同步网(SnchronizationNetwork),电信网运行的支持系统之一。为电信网内电信设备时钟(或载波)提供同步控制信号,使其工作速率同步。电信网内任何两个数字交换设备的时钟速率差超过一定值时,接收信号交换的缓存读写时钟会产生速率差,当该差值超过某一定值时将产生滑码,会造成接收数字流的误码或失步。同步网的功能就在于使交换设备时钟频率相同,以消除或减少滑码。“同步”指通信双方的定时信号符合特定的频率或相位关系,即两个或两个以上信号在相对应的有效瞬间,其相位差或频率差保持在约定的允许范围之内,根据不同区分,同步被分为位同步、帧同步和网同步。位同步指通信双方的定时脉冲信号频率相等且符合一定的相位关系;帧同步指通信双方的帧定时信号的频率相同且保持一定的相位关系;网同步指网络中各个节点的时钟信号的频率相等,也就是多个节点之间的时钟同步,从而也可以在各个节点实现帧同步。当通信双方由于位定时偏差,造成码元增加和减少时,造成滑码。滑码与误码作为数字网的同步损伤,会对网络应用造成影响,例如通信网难以定位。不同电路对滑码率的性能指标有不同的要求。编码的冗余度愈高,滑动损伤就愈小。如语音冗余高,对滑动敏感度低,这时普通话音可能出现“喀喀”声,传真业务可能造成信息不全;而数据对滑动较敏感,会造成音质差、丢包率高、接通率低、图像花屏和伴音中断等现象,影响通信质量,严重时会中断通信。在实际的数字交换机中,缓冲器的容量可为1帧或大于1帧(典型值为2个帧长),把滑码一次丢失或增加的码元数控制为1帧。这样做的优点是:仅对完整的一个帧漏读或重读,而不打乱帧结构,防止帧失步的产生。由于滑码一次丢失或增加的码元数是确定的,也常称其为受控滑码。(4)、电话通信网是进行交互型话音通信,开放电话业务的电信网,简称电话网。它是一种电信业务量最大,服务面积最广的专业网,可兼容其它许多种非话业务网,是电信网的基本形式和基础,包括本地电话网、长途电话网和国际电话网。电话网采用电话交换方式,主要由四部分组成:发送和接收电话信号的用户终端设备、进行电路交换的交换设备、连接用户终端和交换设备的线路和交换设备之间的链路。电话网基本结构形式分为多级汇接网和无级网两种。我国电话网由四级长途交换中心和一级本地网端局组成五级结构。其中一、二、三、四级的长途交换中心构成长途电话网,由本地网端局和按需要设置的汇接局组成本地电话网。除了以传递电话信息为主的业务网外,一个完整的电话通信网还需要有若干个用以保障业务网正常运行、增强网路功能、提高网路服务质量的支撑网路。支撑网中传递的是相应的监测和控制信号。支撑网包括同步网、公共信道信令网、信输监控网和网路管理网等(5)、移动通信网由无线接入网、核心网和骨干网三部分组成。无线接入网主要为移动终端提供接入网络服务,核心网和骨干网主要为各种业务提供交换和传输服务。从通信技术层面看,移动通信网的基本技术可分为传输技术和交换技术两大类。从传输技术来看,在核心网和骨干网中由于通信媒质是有线的,对信号传输的损伤相对较小,传输技术的难度相对较低。但在无线接入网中由于通信媒质是无线的,而且终端是移动的,这样的信道可称为移动(无线)信道,它具有多径衰落的特征,并且是开放的信道,容易受到外界干扰,这样的信道对信号传输的损伤是比较严重的,因此,信号在这样信道传输时可靠性较低。同时,无线信道的频率资源有限,因此有效地利用频率资源是非常重要的。也就是说,在无线接入网中,提高传输的可靠性和有效性的难度比较高。从网络技术来看,交换技术包括电路交换和分组交换两种方式。目前移动通信网和移动数据网通常都有这两种交换方式。在核心网中,分组交换实质上是为分组选择路由,这是一种类似于移动IP选路机制(或称为路由技术),它是通过网络的移动性管理(MM)功能来实现的。接入网是在公用电信网中连接核心网与用户或用户驻地网的桥梁,是本地交换机到用户终端的实施系统,它通过V5接口与交换设备连接,无交换功能,主要完成传输、复用、交*
本文标题:通信网络大作业
链接地址:https://www.777doc.com/doc-2006887 .html