您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 走向高考--2015高考一轮总复习人教A版数学9-3
基础巩固强化一、选择题1.(文)已知E、F、G、H是空间内四个点,条件甲:E、F、G、H四点不共面,条件乙:直线EF和GH不相交,则甲是乙成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案]A[解析]点E、F、G、H四点不共面可以推出直线EF和GH不相交;但由直线EF和GH不相交不一定能推出E、F、G、H四点不共面,例如:EF和GH平行,这也是直线EF和GH不相交的一种情况,但E、F、G、H四点共面.故甲是乙成立的充分不必要条件.(理)在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,若EF与GH交于点M,则()A.M一定在AC上B.M一定在BD上C.M可能在AC上也可能在BD上D.M不在AC上,也不在BD上[答案]A[解析]点M在平面ABC内,又在平面ADC内,故必在交线AC上.2.(文)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交[答案]B[解析]由题意知直线l与平面α相交,不妨设直线l∩α=M,对A,在α内过M点的直线与l不异面,A错误;对B,假设存在与l平行的直线m,则由m∥l得l∥α,这与l∩α=M矛盾,故B正确,C错误;对D,α内存在与l异面的直线,故D错误.综上知选B.(理)平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为()A.3B.4C.5D.6[答案]C[解析]如图,平行六面体ABCD-A1B1C1D1中,既与AB共面,也与CC1共面的棱为BC、C1D1、DC、AA1、BB1,共5条.3.(2014·汉沽一中检测)已知平面α和不重合的两条直线m、n,下列选项正确的是()A.如果m⊂α,n⊄α,m、n是异面直线,那么n∥αB.如果m⊂α,n与α相交,那么m、n是异面直线C.如果m⊂α,n∥α,m、n共面,那么m∥nD.如果m⊥α,n⊥m,那么n∥α[答案]C[解析]如图(1)可知A错;如图(2)可知B错;如图(3),m⊥α,n是α内的任意直线,都有n⊥m,故D错.∵n∥α,∴n与α无公共点,∵m⊂α,∴n与m无公共点,又m、n共面,∴m∥n,故选C.4.(文)正方体ABCD-A1B1C1D1中,与对角线AC1异面的棱有()A.3条B.4条C.6条D.8条[答案]C[解析]在正方体ABCD-A1B1C1D1中,与对角线AC1有公共点A的和有公共点C1的各有3条,其余6条所在正方体的面与AC1均相交,且交点不在这些棱上,由异面直线判定定理知,这6条与AC1都异面,故选C.(理)如图是正方体或四面体,P、Q、R、S分别是所在棱的中点,则这四个点不共面的一个图是()[答案]D[解析]A中,PS∥QR;B中如图可知此四点共面;C中PS∥QR;D中RS在经过平面PQS内一点和平面PQS外一点的直线上,故选D.5.(2013·南昌第一次模拟)设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β()A.不存在B.有且只有一对C.有且只有两对D.有无数对[答案]D[解析]过直线a的平面α有无数个.当平面α与直线b平行时,两直线的公垂线与b确定的平面β⊥α;当平面α与b相交时,过交点作平面α的的垂线与b确定的平面β⊥α,∵平面α有无数个,∴满足条件的平面α、β有无数对,故选D.6.(文)(2013·惠州调研)已知m、n是两条不同直线,α、β、γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n[答案]D[解析]当m∥α,n∥α时,m与n可能相交、平行,也可能异面,故A错;B中α⊥γ,β⊥γ时,α与β可能平行,也可能相交,如长方体交于同一个顶点的三个面,故B错;α∩β=l,m⊄α,m⊄β,m∥l时,满足m∥α,m∥β,故C错;由线面垂直的性质知,m⊥αn⊥α⇒m∥n.(理)(2013·广东)设l为直线,α,β是两个不同的平面.下列命题中正确的是()A.若l∥α,l∥β,则α∥βB.若l⊥α,l⊥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β[答案]B[解析]画出一个长方体ABCD-A1B1C1D1.对于A,C1D1∥平面ABB1A1,C1D1∥平面ABCD,但平面ABB1A1与平面ABCD相交;对于C,BB1⊥平面ABCD,BB1∥平面ADD1A1,但平面ABCD与平面ADD1A1相交;对于D,平面ABB1A1⊥平面ABCD,CD∥平面ABB1A1,但CD⊂平面ABCD.二、填空题7.在图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则使直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)[答案]②④[解析]图①中,直线GH∥MN;图②中,G、H、N三点在三棱柱的侧面上,MG与这个侧面相交于G,∴M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉平面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.8.如图,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段BB1上的一动点,则当AM+MC1最小时,△AMC1的面积为________.[答案]3[解析]将三棱柱的侧面A1ABB1和B1BCC1以BB1为折痕展平到一个平面α上,在平面α内AC1与BB1相交,则交点即为M点,易求BM=1,∴AM=2,MC1=22,又在棱柱中,AC1=14,∴cos∠AMC1=AM2+MC21-AC212AM·MC1=2+8-142×2×22=-12,∴∠AMC1=120°,∴S△AMC1=12AM·MC1·sin∠AMC1=12×2×22×32=3.9.(文)如图所示,已知正三棱柱ABC-A1B1C1的各条棱长都相等,M是侧棱CC1的中点,则异面直线AB1和BM所成的角的大小是________.[答案]90°[解析]取BC的中点N,连接AN,则AN⊥平面BCC1B1,∵BM⊂平面BCC1B1,∴AN⊥BM,又在正方形BCC1B1中,M、N分别为CC1与BC的中点,∴B1N⊥BM,又B1N∩AN=N,∴BM⊥平面AB1N,∴BM⊥AB1,∴AB1与BM所成的角是90°.(理)在三棱锥P-ABC中,PA⊥底面ABC,AC⊥BC,PA=AC=BC,则直线PC与AB所成角的大小是________.[答案]60°[解析]分别取PA、AC、CB的中点F、D、E连接FD、DE、EF、AE,则∠FDE是直线PC与AB所成角或其补角.设PA=AC=BC=2a,在△FDE中,易求得FD=2a,DE=2a,FE=6a,根据余弦定理,得cos∠FDE=2a2+2a2-6a22×2a×2a=-12,所以∠FDE=120°.所以PC与AB所成角的大小是60°.三、解答题10.(文)已知在正方体ABCD-A′B′C′D′中,M、N分别是A′D′、A′B′的中点,在该正方体中是否存在过顶点且与平面AMN平行的平面?若存在,试作出该平面,并证明你的结论;若不存在,请说明理由.[分析]假设存在经过B点与平面AMN平行的平面α,则平面A′B′C′D′与这两平行平面的交线应平行,由于M、N分别为A′D′、A′B′的中点,∴取C′D′的中点F,B′C′的中点E,则MN∥EF,可证明平面BDFE∥平面AMN,过其他点的截面同理可分析找出.[解析]存在.与平面AMN平行的平面有以下三种情况(E、F分别为所在棱的中点):下面以图(1)为例进行证明.∵四边形ABEM是平行四边形,∴BE∥AM,又BE⊂平面BDE,AM⊄平面BDE,∴AM∥平面BDFE.∵MN是△A′B′D′的中位线,∴MN∥B′D′,∵四边形BDD′B′是平行四边形,∴BD∥B′D′,∴MN∥BD,又BD⊂平面BDE,MN⊄平面BDE,∴MN∥平面BDFE,又AM⊂平面AMN,MN⊂平面AMN,且AM∩MN=M,∴由平面与平面平行的判定定理可得,平面AMN∥平面BDFE.(理)如图所示,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.(1)求异面直线A1M和C1D1所成的角的正切值;(2)证明:平面ABM⊥平面A1B1M.[解析]方法1:(1)如图,因为C1D1∥B1A1,所以∠MA1B1为异面直线A1M与C1D1所成的角.因为A1B1⊥平面BCC1B1,所以∠A1B1M=90°,而A1B1=1,B1M=B1C21+MC21=2,故tan∠MA1B1=B1MA1B1=2.即异面直线A1M和C1D1所成的角的正切值为2.(2)证明:由A1B1⊥平面BCC1B1,BM⊂平面平面BCC1B1,得A1B1⊥BM①由(1)知,B1M=2,又BM=BC2+CM2=2,B1B=2,所以B1M2+BM2=B1B2,从而BM⊥B1M②又A1B1∩B1M=B1,∴BM⊥平面A1B1M,而BM⊂平面ABM,因此平面ABM⊥平面A1B1M.方法2:以A为原点,AB→,AD→,AA1→的方向分别作为x、y、z轴的正方向,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),A1(0,0,2),B1(1,0,2),C1(1,1,2),D1(0,1,2),M(1,1,1).(1)A1M→=(1,1,-1),C1D1→=(-1,0,0),cos〈A1M→,C1D1→〉=-13×1=-33.设异面直线A1M与C1D1所成角为α,则cosα=33,∴tanα=2.即异面直线A1M和C1D1所成的角的正切值是2.(2)证明:A1B1→=(1,0,0),BM→=(0,1,1),B1M→=(0,1,-1),A1B1→·BM→=0,BM→·B1M→=0,∴A1B1→⊥BM→,BM→⊥B1M→,即BM⊥A1B1,BM⊥B1M,又B1M∩A1B1=B1,∴BM⊥平面A1B1M,而BM⊂平面ABM,因此ABM⊥平面A1B1M.能力拓展提升一、选择题11.(文)(2014·雅礼中学月考)l1、l2、l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1、l2、l3共面D.l1、l2、l3共点⇒l1、l2、l3共面[答案]B[解析]举反例,由教室内共点的三条墙角线可知A、D是错误的;由三棱柱的三条侧棱可知C是错误的.故选B.(理)(2014·荆州中学月考)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1、CD1的中点,则下列判断错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行[答案]D[解析]由于C1D1与A1B1平行,MN与C1D1是异面直线,所以MN与A1B1是异面直线,故选项D错误.[点评]取CD中点Q,BC中点R,则NQ綊12D1D,MR綊12CC1,∵CC1綊D1D,∴NQ綊MR,∴MN∥QR,∵QR∥BD,AC⊥BD,∴AC⊥MN,∴B正确;∵MN∥QR,QR∥BD,∴MN∥BD,∴C正确;∵CC1⊥平面ABCD,∴CC1⊥PQ,∴CC1⊥MN,∴A正确.12.(2012·山西联考)已知直线m、n与平面α、β,下列命题中正确的是()A.m∥β,α∥β,则m∥αB.平面α内不共线三点到平面β的距离相等,则α∥βC.α∩β=m,n⊥m且α⊥β,则n⊥αD.m⊥α,n⊥β且α⊥β,则m⊥n[答案]D[解析]当m⊂α时,也可满足m∥β,α∥β,故①错;当α∩β=l,三点A、B、C位于l的两侧,AB∥l,直线AB到l的距离与点C到l的距离相等时,满足A、B、C三点到平面β的距离相等,故②错;由面面垂直的性质知,C错,因为只有在满足n⊂β内时,才能由n⊥m得出n⊥α的结论;α⊥βn⊥β⇒n∥α或n⊂αm⊥α⇒m⊥n,故D正确.二、填空题13.(2
本文标题:走向高考--2015高考一轮总复习人教A版数学9-3
链接地址:https://www.777doc.com/doc-2007200 .html