您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 车道被占用对城市道路通行能力影响的分析
1车道被占用对城市道路通行能力影响的分析摘要随着经济的快速发展,我国的汽车保有量迅猛增加,随之而来的是各大中城市的交通量成倍增加,车道被占用程度逐渐增大,因此,研究城市道路车道被占后道路通行能力的变化,及车辆排队长度与实际通行能力、事故持续时间、上游车流量内在联系具有十分重要的现实意义。针对问题一:我们主要从拥堵状况对通行能力影响的方面分析。首先根据上游路口直行车道和右转车道通行量之和解出理想情况下通行能力,然后求出在堵塞情况下实际通行能力。分析得出实际通行能力随时间下降,阻塞程度逐渐变大,阻塞程度在交通事故发生后的第9个周期即绿灯放行到第9次时阻塞程度达到最大;而在16:47:50到事故结束,交通能力的变化成上升趋势,但交通能力值仍较小,第9个周期后阻塞程度逐渐减缓。针对问题二:我们从标准差检验与单车平均总延误两方面分析。一方面,我们从视频1、2的实际流通量和理想流通量考虑,借助MATLAB编程得到视频1、2的标准差s1s2,故说明视频1所占车道对该横断面实际通行能力影响大;另一方面根据单车平均总延误求出视频1、2平均每辆车的平均延误时间T1T2,判断出视频1所占车道影响程度更大。最后综合两方面得出结论:两个交通事故处于同一横截面不同车道存在差异并且内侧车道被占用时对实际通行能力影响更大。针对问题三:我们首先利用车流波动理论分析发生交通事故后路段上车辆排队的过程,推导出排队长度与道路实际通行能力、事故持续时间和上游车流量之间的关系式,然后根据交通事故发生后的数据进行残差分析,最终得出的关系函数为:S=20×(1−68.850−p7.992M×4.167)×(4.16×M−P7.992−68.850.065−P7.992−T)针对问题四:首先我们根据问题三中统计的数据将30s作为一个周期,周期内的实际流通能力为均值,然而在整个过程实际流通能力是不断变化的,故我们利用上游流车辆与实际流通能力之差对时间进行积分,得出汽车数随时间变化的累积量。其次利用第三问中的排队长度和汽车数量求出汽车在此路段的平均密度,再根据事故地点据上游交叉路口的距离140米,求出此路段最大承载汽车量。最后利用积分方程与最大承载的汽车数目相等的关系式,车辆排队长度到达上游路口所需时间为174秒。关键字:车流波动理论标准差检验单车平均总延误时间积分2一、问题重述车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。由于城市道路具有交通密度大、连续性强等特点,若一条车道被占用,可能出现交通阻塞甚至区域性拥堵的现象。用数学建模的思想来解决车道被占用对城市道路通行能力影响程度的问题,从而为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。根据所给附件1、2(视频1、2中的两个交通事故处于同一路段的同一横断面,且完全占用两条车道)分析以下问题:1.根据视频1(附件1),分析视频中交通事故发生至撤离期间事故所处横断面实际通行能力的变化过程。2.根据视频2(附件2),分析说明与视频1(附录1)相比,同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异。3.构建数学模型,分析视频1(附件1)中交通事故所影响的路段车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的关系。4.假如视频1(附件1)中的交通事故所处横断面距离上游路口变为140米,路段下游方向需求不变,路段上游车流量为1500pcu/h,事故发生时车辆初始排队长度为零,且事故持续不撤离。请估算,从事故发生开始,经过多长时间,车辆排队长度将到达140米。二、问题分析问题一:实际通行能力受车道数、车道宽度、交叉口处、拥堵状况等多种因素的影响,但由于题目信息限制,所以我们主要考虑拥堵状况时对通行能力的影响,从而分析交通事故发生至撤离期间,事故所处横断面实际交通能力的变化过程。当交通事故刚发生时,可理解为该事故还未对路段造成影响,仍为畅通状态为理想状态下的通行能力。由附件四可知上游总车流量由直行与右拐两个方向的车辆组成如下示意图,通过计算行驶至相同截断面的车的总流量,计算出在该交通事故相同截面车道的车流量,即理想情况下通过车道的通行能力。图1:上游十字路口车流向示意所谓道路的通行能力是指在一定的道路交通条件下,单位时间内某一车道或3道路某一断面能通过的最大车辆数【1】。视频中有6次车辆排队长度达到120米的时刻,这些时刻将交通事故发生的时间分为了6个时间段,我们通过视频1将每个时间段流经过的车辆统计出来,并换算成标准车当量数。最后画出理想情况与实际流通量的折线图,来体现交通能力的变化过程。另一方面根据附件4可知该交通事故发生路段的上游路口有一红绿信号灯,信号周期为60秒。我们将车祸发生开始时从上游行驶过来的车作为第1个周期,记录第1个周期中的全部车辆均驶过事故所处横断面所用的时间,即该拨车辆中最后一辆车行驶过横断面所消耗的时间,依次记录出第2、3、……周期每拨车辆中最后一辆车行驶过横断面所消耗的时间。我们用每周期对应的时间表示为道路阻塞的程度,通过每周期对应的时间的变化即道路阻塞程度的变化来说明交通能力的变化。问题二:对于同一横断面交通事故所占车道不同对该横断面实际通行能力影响的差异性,分析。一方面,利用标准差检验的对其差异性分析。由于问题一中我们已经求出视频1的流通量,所以我们同样可求解视频2的流通量。得出视频2的流通量后,根据第一问求得的最大通行能力,求出视频1、2分别与理想情况下即最大通行能力之间的标准差,通过标准差来判断同一横截面不同通道对实际通行能力的影响大小。另一方面,从平均每辆车的平均延误时间来考虑。查阅资料可得到在该路段理想状态下行驶的速度,由于题中视频并没有给定度量范围,不能确定视频中每辆车具体的行驶距离。但是视频中在路段车辆排队长度达到120米时做了标记,所以我们统计出此时的120米内的车数量,并记录最后一辆车通过事故发生截断面后,计算出平均每辆车的平均延误时间。若延误时间越长,则说明该视频中的交通事故所占车道对该横断面实际通行能力影响较大;反之,则越小。问题三:根据波具有的传播性这个特征,我们把交通事故的发生与撤离形象的理解为波从形成至消散的过程。交通事故发生到撤离期间,上游车速由高速向低速转变,车辆密集度由低密度的畅通状态向高密度的拥挤状态转变,从而形成集结波,随着车辆的减速以及密集度的增大,从而使集结波面的范围向后传播;事故发生截断面处同样存在消散波,消散波可以抑制集结波范围的扩大。当消散波的波速大于集结波的速度时,交通阻塞现象得到缓解,在一定的时间内交通阻塞现象可消失;当消散波的波速小于集结波的波速时,交通阻塞程度加深,车辆排队长度逐渐加长。通过上述原理建立车流波动排队模型得出车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量间的函数关系。根据视频1统计出车辆排队长度、事故横断面实际通行能力、事故持续时间、路段上游车流量相关数值,并代入公式,检验函数关系,求出相对残差和平均残差。若平均残差较小则函数关系符合视频1的情况,若平均标准差较大即误差大,则对模型进行优化或修正。问题四:首先我们根据问题三中所统计的数据即将30s为一个周期,在此周期内实际流通能力作为一个的值处理,在整个过程实际流通能力是不断变化的,即我们利用上游流车辆与实际流通能力之差对时间进行积分,可以得出随时间的变化汽车数目的累积量。其次跟据第三问中的排队长度和汽车数量求出汽车在此路段的平均密度,再根据事故点据上游交叉路口的距离140米求出此路段最大承载的汽车数量。最后利用积分方程与最大承载的汽车数目相等,得出将在174s4时,车辆排队长度将到达上游路口。三、符号说明N直--直行车道通行能力T周--信号灯周期时间t绿--每个信号周期内的绿灯时间t损--一个周期内绿灯损失时间Q--120米内的车数量T--平均每辆车的平均延误时间Wx,y--为车队波的波速Vf--为不发生交通阻塞的速度;Kj--为阻塞密度Qz--表示上游的车流量Vz--为上游的平均速度p--实际交通能力T--事故持续时间M--路段上游车流量四、问题假设1.假设获取的数据真实有效;2.假设不考虑气候条件及其他路面状况3.不考虑小区车辆对主车道通行能力的影响4.不考虑上游路口信号配时方案变化5五、模型建立与求解5.1研究背景随着经济的快速发展,我国的汽车保有量迅猛增加,随之而来的是各大中城市的交通量成倍增加,车道被占用程度逐渐增大,交通拥挤日益严重。严重的交通拥挤导致了交通事故的增多,交通事故又导致了车道被占用程度增大,导致了交通的恶性循环。而通行能力是道路、交通规划、交通设施的设计和改善,以及交通管理等有关道路交通工程各个方面最重要的指标之一。所以本文从车道被占用的角度出发,通过分析同一截断面所占车道不同对城市道路通行能力的影响,分析出车辆排队长度与事故横断面实际通行能力、事故持续时间、路段上游车流量的关系,从而为交通管理部门正确引导车辆行驶、审批占道施工、设计道路渠化方案、设置路边停车位和设置非港湾式公交车站等提供理论依据。5.1.1横断面实际通行能力的分析由于道路交通能力是在一定的服务水平、道路和交通条件下,单位时间内道路或车道某截面除允许通过的最大交通量,是反映道路性质与功能、道路服务水平的重要指标之一,并且实际通行能力受车道数、车道宽度、交叉口处、拥堵状况等多种因素的影响,但由于题目信息限制,所以我们主要考虑拥堵状况对通行能力的影响。(1)畅通状态下的通行能力当交通事故刚发生时,可理解为该事故还未对路段造成影响,仍为畅通状态即为理想状态下的通行能力。根据附件4可知该交通事故发生所在地的上游有一交叉路口,驶进该车道的车辆来自直行车道与右拐车道。由于交通事故导致两个车道被占用,所以该交通事故横断面的通行能力即为最外车道的通行能力,我们用N总表示。交叉口的通行能力指的是各相交道路进口通行能力之和(以进口处车道的停车线作为基准面,凡是通过该断面的车辆被认为已通过交叉口),而每个进出口处通行能力分为直行、右转、左转三种情况【3】。根据附件4可知我们只需考虑直行与右转这两种情况。1、直行车道通行能力一条直行车道通行能力N直=3600T周×t绿−t损t间(1)6式中:T周为信号灯周期时间,t绿为每个信号周期内的绿灯时间;t损为一个周期内绿灯损失时间,一般只计车辆加速时间损失,不计反应和启动的时间损失(绿灯前的黄灯时间已准备好),t间为前后车连续通过停车线的平均时间间隔,小汽车车流取2.5s,大型车取2.5s。由附件5知T周=60s,t绿=30s,t损=3s,t间=2.5s,套用(1)式可得N直。2、右转车道通行能力的求解由于该右转车道为直右混行专用车道,所以该类车道的通行能力可用下式表示:N直右=N直(1−n右2)K(2)式中:n右为右转车所占百分率;K为直、右车辆混行时,因相互干扰的折减系数,可取1.5。由于附件4中右转相位不受色灯信号控制,所以右转车辆进入事故发生车道的车辆较多,我们假设右转车所占百分率n右=50%,计算出N直右。N总=N直右+N直(3)带入数据得出畅通时该通道的交通能力值为1377pcu/h。(2)实际交通量的分析根据视频1可得出交通事故发生及撤离的时间点分别为:16:42:32、17:03:50。即该交通事故持续了21分钟18秒。我们将视频1中如下截图每次车辆排队长度达到120米时对应的时间点视为整个事故发生时间的节点,由于视频中存在6个该类节点,分别为:16:42:47、16:47:50、16:50:42、16:51:44、16:52:46、16:54:03。这些时刻将交通事故发生的时间分为了6个时间段。然后统计出每个时间段通过车的交通量。7图2:视频1某一时刻车辆队长为120米的情况由于在交通流中有不同车型的车辆组成,为准确衡量道路的通行能力,需要采用车辆当量方法换算为标准车型的当量计数。交通量调查中,目前规定划分车辆类型为:标准中型车指解放CA-1031型载货汽车;标准小客车
本文标题:车道被占用对城市道路通行能力影响的分析
链接地址:https://www.777doc.com/doc-2010411 .html