您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 园林工程 > 新人教A版高中数学(选修2-1)2.3《双曲线》word教案
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓2.2.3双曲线的简单几何性质(共2课时)一、教学目标1.了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线和离心率等。2.能用双曲线的简单几何性质解决一些简单问题。二、教学重点、难点重点:双曲线的几何性质及初步运用。难点:双曲线的渐近线。三、教学过程(一)复习提问引入新课1.椭圆有哪些几何性质,是如何探讨的?2.双曲线的两种标准方程是什么?下面我们类比椭圆的几何性质来研究它的几何性质.(二)类比联想得出性质(范围、对称性、顶点)引导学生完成下列关于椭圆与双曲线性质的表格(三)渐近线双曲线的范围在以直线byxa和byxa为边界的平面区域内,那么从x,y的变化趋势▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓看,双曲线22221xyab与直线byxa具有怎样的关系呢?根据对称性,可以先研究双曲线在第一象限的部分与直线byxa的关系。双曲线在第一象限的部分可写成:[当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.在其他象限内也可以证明类似的情况.现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精再描几个点,就可以随后画出比较精确的双曲线.(四)离心率由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.(五)例题讲解例1求双曲线22143xy的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的标准方程,容易求出,,abc.引导学生用双曲线的实轴长、虚轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在y轴上的渐近线是ayxb.练习P41练习1例2已知双曲线的中心在原点,焦点在y轴上,焦距为16,离心率为43,求双曲线的标准方程。▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓例3求与双曲线221169xy共渐近线,且经过23,3A点的双曲线的标准方及离心率.分析:已知双曲线的渐近线求双曲线的标准方程:方法一按焦点位置分别设方程求解;方法二可直接设所求的双曲线的方程为22,0169xymmRm求双曲线22916144yx的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.练习P41练习2例5如图,设,Mxy与定点5,0F的距离和它到直线l:165x的距离的比是常数54,求点M的轨迹方程.分析:若设点,Mxy,则225MFxy,到直线l:165x的距离165dx,则容易得点M的轨迹方程.例6双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m.试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).](六)课堂练习[1.已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程.(1)16x2-9y2=144;(2)16x2-9y2=-144.2.求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上(2)焦距是10,虚轴长是8,焦点在y轴上;▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓曲线的方程.点到两准线及右焦点的距离.
本文标题:新人教A版高中数学(选修2-1)2.3《双曲线》word教案
链接地址:https://www.777doc.com/doc-2034852 .html