您好,欢迎访问三七文档
一、纳米科学技术的基本概念和内涵“纳”(nano)来自于希腊文,本意是“矮子”或”侏儒”的意思。纳米(nanometer)是一个长度单位,简写为nm。1nm=10(-9)m=10埃。1,000纳米=1微米(μm)。头发直径:50-100m,1nm相当于头发的1/50000。氢原子的直径为1埃,所以1纳米等于10个氢原子一个一个排起来的长度。纳米科学离我们并不遥远原子是构成物质的基本单元,纳米科学与技术的研究实际上就是在原子层次上认识世界。1990年,世界上最小的“I-B-M”3个字母在实验室诞生了。1990年,美国IBM公司阿尔马登研究中心(AlmadenResearchCenter)的科学家使用STM把35个氙原子移动到各自的位置,在镍金属表面组成了“IBM”三个字母,这三个字母加起来不到3纳米长,成为世界上最小的IBM商标。荷叶自清洁效应水滴落在荷叶上,会变成了一个个自由滚动的水珠,而且,水珠在滚动中能带走和叶表面尘土。荷叶的基本化学成分是叶绿素、纤维素、淀粉等多糖类的碳水化合物,有丰富的羟基(-OH)、(-NH)等极性基团,在自然环境中很容易吸附水分或污渍。而荷叶叶面都具有极强的疏水性,洒在叶面上的水会自动聚集成水珠,水珠的滚动把落在叶面上的尘土污泥粘吸滚出叶面,使叶面始终保持干净,这就是著名的“荷叶自洁效应”研究表明,包括蜜蜂、海龟等在内的许多生物体内都存在着纳米尺寸的磁性颗粒。这些磁性纳米颗粒对于生物的定位与运动行为具有重要意义。最新的科学研究发现,蜜蜂的腹部存在着磁性纳米粒子,这种磁性的纳米粒子具有类似指南针的功能,蜜蜂利用这种“罗盘”来确定其周围环境,利用在磁性纳米粒子中存储的图像来判明方向。当蜜蜂采蜜归来时,实际上就是把自己原来存储的图像和所见到的图像进行对比,直到两个图像达到一致,由此来判断自己的蜂巢。利用这种纳米磁性颗粒进行导航,蜜蜂可以完成数公里的旅程。横行霸道亿万年前,螃蟹并非如此“横行”。因其第一对触角里有几颗磁性纳米微粒,螃蟹便拥有了用于定向的几只小“指南针”。靠这种高精度的“指南针”,螃蟹的祖先堂堂正正地前进后退,行定自如。后来,由于地球的磁场发生多次剧烈倒转,螃蟹触角里的那几颗珍贵的纳米小磁粒发生错乱,失去了正确指示方向的功能。于是,晕晕乎乎的螃蟹便开始横行,从此落得个蛮横的名声。飞檐走壁的壁虎壁虎可以在任何墙面上爬行,反贴在天花板上,甚至用一只脚在天花板上倒挂。它依靠的就是纳米技术。壁虎脚上覆盖着十分纤细的茸毛,可以使壁虎以几纳米的距离大面积地贴近墙面。尽管这些绒毛很纤弱,但足以使所谓的范德华键发挥作用,为壁虎提供数百万个的附着点,从而支撑其体重。这种附着力可通过“剥落”轻易打破,就像撕开胶带一样,因此壁虎能够穿过天花板。蝴蝶翅膀上的斑斕色彩蝴蝶因为其翅膀上变化多端、绚烂美好的花纹而使人着迷。这也让生物学家们感到疑惑:蝴蝶令人眼花缭乱的颜色是如何形成的,又有什么不同意义呢?最近,荷兰格罗宁根大学的希拉尔多博士发现了解决这个问题的通道。在研究了菜粉蝶和其它蝴蝶翅膀的表面后,希拉尔多博士揭示了这个秘密:翅膀上的纳米结构正是蝴蝶的“色彩工厂”。他的研究表明,蝴蝶翅膀上炫目的色彩来自一种微小的鳞片状物质,它们就像圣诞树上小小的彩灯,在光线的照耀下能折射出斑斓的色彩。蝴蝶翅膀上的颜色其实是一个身份标志。不同颜色的翅膀,让形色万千的蝴蝶能在很远的地方就识别出同伴,甚至辨别出对方是雄是雌。通过电子显微镜的观察,希拉尔多博士发现粉蝶翅膀的结构非常奇特;尽管不同种类的蝴蝶,鳞片的结构不同,但彼此之间还是有共同特征。一般来说,蝴蝶翅膀由两层仅有3至4微米厚的鳞片组成,上面一层鳞片像微小的屋瓦一样交替,每个鳞片的构造也很复杂。而下一层则比较光滑。蝴蝶翅膀这种井然有序的安排形成了所谓的光子晶体,也就是纳米结构。通过这种结构,蝴蝶翅膀能捕捉光线,仅让某种波长的光线透过。这便决定了不同的颜色。纳米器件“自上而下”是指通过微加工或固态技术,不断在尺寸上将人类创造的功能产品微型化;“自下而上”是指以原子、分子为基本单元,根据人们的意志进行设计和组装,从而构筑成具有特定功能的产品。目前,在纳米化工厂、生物传感器、生物分子计算机、纳米分子马达等方面,都做了重要的尝试。纳米材料定义按国际制(SI)词冠中纳米尺寸概念以及纳米度量单位与其它度量单位的关系如下:1艾米(exametre)=1000拍米(petametre)1拍米(petametre)=1000太米(terametre)1太米(terametre)=1000吉米(gigametre)1吉米(gigametre)=1000兆米(megametre)1兆米(megametre)=1000千米(kilometre)1千米(kilometre)=10百米(hectometre)纳米材料定义1百米(hectometre)=10十米(decametre)十米(decametre)=100分米(decimetre)1分米(decimetre)=10厘米(centimetre)1厘米(centimetre)=10毫米(miillimetre)1毫米(miillimetre)=1000微米(micrometre)1微米(micrometre)=1000纳米(nanometre)1纳米(nanometre)=1000皮米(picometre)1皮米(picometre)=1000飞米(femtometre)1飞米(femtometre)=1000阿米(attometre)纳米材料定义纳米材料,是指在结构上具有纳米尺度特征的材料,纳米尺度一般是指1-100nm。广义定义:材料的基本单元至少有一维的尺寸在1-100nm范围内。同时具备的两个基本特征:纳米尺度和性能的特异变化。纳米材料的定义及发展纳米材料的分类按材质纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。按形态纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料。按功能纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等。纳米材料的分类按纳米尺度在空间的表达特征零维纳米材料,即纳米颗粒材料一维纳米材料,如纳米线、棒、丝、管和纤维等二维纳米材料,如纳米膜、纳米盘和超晶格等三维纳米材料,指在三维空间中含有上述纳米材料的块体,如纳米陶瓷材料,如介孔材料等。第二章纳米材料的特性当材料的结构进入纳米尺度调制范围时,会表现出小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等纳米效应。2.1纳米材料的基本效应第二章纳米材料的特性当纳米粒子的尺寸与光波的波长、传导电子的德布罗意波长以及超导态的相干长度或透射深度等物理尺寸相当或比它们更小时,会使晶体原有的周期性的边界条件被破坏,声、光、电、磁、热力学特性等均会随着粒子尺寸的减小发生显著的变化。这种因尺寸的减小而导致的变化称为小尺寸效应,也叫体积效应。2.1纳米材料的基本效应-小尺寸效应(1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。(2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后,却发现其熔点显著降低,当颗粒小于10nm时变得尤为显著。如块状的金的熔点为1064℃,当颗粒尺寸减到10nm时,则降低为1037℃,降低27℃,2nm时变为327℃;第二章纳米材料的特性普通的材料当其处于纳米状态或具有纳米结构时会具有很高的热容量。纳米金属Cu的比热容是传统Cu的2倍。一些纳米材料的热导率很低。SiO2气凝胶固态热导率可比相应的玻璃态材料低2-3个数量级。SiO2气凝胶在常温下热导率仅为0.013W/(m·K),成为最好的固体绝热材料。另有一些纳米材料其热交换性能非常好。纳米Ag晶体用于稀释制冷机的热交换器效率较相应的非纳米材料高30%。2.2纳米材料的特性-热学特性20磁性液体(magneticliquids)是一种液态的磁性材料。该材料既具有固体的磁性又具有液体的流动性。它是由粒径为纳米尺寸(几个到几十个纳米)的磁性微粒,依靠表面活性剂的帮助,均匀分散、悬浮在载液(基液加表面活性剂)中,构成的一种固液两相的胶体混合物,这种材料即使在重力、离心力或电磁力作用下也不会发生固液分离,是一种典型的纳米复合材料。第二章纳米材料的特性也称界面效应,是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径的减小,纳米粒子的表面原子数、比表面积、表面能及表面结合能都迅速增大。表面原子处于裸露状态,周围缺少相邻原子,有许多剩余键力,易与其他原子结合而稳定,具有较高的化学活性。纳米材料的很多物性主要由界面决定。2.1纳米材料的基本效应-表面效应第二章纳米材料的特性当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象,以及半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象,均称为量子尺寸效应。2.1纳米材料的基本效应-量子尺寸效应第二章纳米材料的特性能带理论表明,金属费米能级附近电子能级一般是连续的,但只有在高温或宏观尺寸情况下才成立。对于只有有限个导电电子的超微粒子来说,低温下能级是离散的。2.1纳米材料的基本效应-量子尺寸效应第二章纳米材料的特性对于宏观物体包含无限个原子,能级间距Eg0;而对纳米微粒,所包含原子数有限,N值很小,这就导致Eg有一定的值,即能级间距发生分裂。当能级间距大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子尺寸效应,这会导致纳米微粒磁、光、声、热、电以及超导电性与宏观特性有着显著的不同。2.1纳米材料的基本效应-量子尺寸效应第二章纳米材料的特性例如,纳米微粒的比热、磁化率与所含的电子奇偶性有关导体转变为绝缘体。如,普通银为良导体,而纳米银在粒径小于20nm时却是绝缘体等。2.1纳米材料的基本效应-量子尺寸效应26纳米微粒的量子尺寸效应等使它对某种波长的光吸收带有蓝移现象。纳米微粒粉体对各种波长光的吸收带有宽化现象。纳米微粒的紫外吸收材料就是利用这两个特性。通常的纳米微粒紫外吸收材料是将纳米微粒分散到树脂中制成膜,这种膜对紫外有吸收能力依赖于纳米粒子的尺寸和树脂中纳米粒子的掺加量和组分。目前,对紫外吸收好的几种材料有:30-40nm的TiO2纳米粒子的树脂膜;Fe2O3纳米微粒的聚固醇树脂膜。第二章纳米材料的特性宏观量子隧道效应是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。2.1纳米材料的基本效应-宏观量子隧道效应纳米材料中的粒子具有穿过势垒的能力被称为隧道效应。例如磁化强度,具有铁磁性的磁铁,其粒子尺寸达到纳米级时,即由铁磁性变为顺磁性或软磁性。吸收光谱兰移的原因:1)量子尺寸效应。即颗粒尺寸下降导致能隙变宽,从而导致光吸收带移向短波方向。Ball等的普适性解释是:已被电子占据的分子轨道能级(HOMO)与未被电子占据的分子轨道能级之间的宽度(能隙)随颗粒直径的减小而增大,从而导致兰移现象。这种解释对半导体和绝缘体均适用。块体半导体与半导体纳米晶的能带示意图2)表面效应。纳米颗粒的大的表面张力使晶格畸变,晶格常数变小。对纳米氧化物和氮化物的研究表明,第一近邻和第二近邻的距离变短,键长的缩短导致纳米颗粒的键本征振动频率增大,结果使红外吸收带移向高波数。第二章纳米材料的特性3.发光现象纳米微粒出现了常规材料所没有的新的发光现象。普通的
本文标题:纳米材料
链接地址:https://www.777doc.com/doc-2059397 .html