您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 裴小艳教学设计及解说论文
用一元一次方程解决实际问题教学设计教学设计思路本节课通过一元一次方程的广泛而具体的应用,展现“问题情境—建立模型—解释、应用与拓展”这一数学模型,体现这一数学模型的意义和重要作用。在建立模型的同时要注意促进学生分析问题及解决问题能力的提高。教学时,教师先提出问题,然后尽可能地让学生思考、探索、操作,然后再交流和研究,共同探讨。教学目标知识与技能1.知道一元一次方程解简单应用问题的方法和步骤,并会列出一元一次方程解简单的应用题;2.从不同的实际问题中分析数量关系,会从各种实际问题中恰当地把握不同形式的等量关系。过程与方法1.通过运用方程解决实际问题,体会运用方程解决实际问题的一般过程。提高分析问题和解决问题的能力。2.让学生独立思考、积极探究,从而发现解决问题的最佳方案。情感态度价值观:通过学习,更加关注生活,增强用数学的意识,从而激发学习数学的热情。教学方法采用直观分析法,引导发现法及尝试指导法充分发挥学生的主体作用重点难点及其应用重点:一元一次方程解敬爱男单应用题的方法和步骤;用列方程的方法解决各类不同的实际问题。难点:弄清问题,合理地选择未知数,正确地列出方程。教具准备投影仪课时安排5课时教学过程设计一、情境导入在小学和本书的第一章里,我们已经学过列方程解应用题。由于那时的应用题都十分简单,看不出代数方法与算数方法比较起来有什么优点。现在我们已经学会了用代数方法解一元一次方程,这就可以解决一些比起小学里稍微复杂的应用题了。我们将逐渐体会到,设未知数列出方程来解应用题,要比不设未知数找出算式容易的多。今问鸡兔同笼,上有35头,下有94足,问鸡兔各有多少只?此题用列方程的方法解非常简单,因为每只鸡有一个头,两只足,每只兔子有一个头、四只足。假设次笼中有鸡x只,则有兔(35)x只,有鸡足2x只,兔足4(35)x,那么根据已知条件:鸡足+兔足=94,得24(35)94xx,这样就列出了方程,解方程即可求出23x,3512x。既有鸡23只,兔12只。此题用算术法解要比上述解法难得多。首先得考虑:如果鸡和兔都长两只足,那么笼中应有35270只足,947024那么说明,这24只足是少算进去的兔足,又因为每只兔有4只足,我们把每只兔子少算了两只足,因为24÷2=12可知笼内有12只兔子。有鸡35-12=23只,具体写出算式就是:笼内有兔子的只数=94352122(只)笼中有鸡的只数=35-12=23(只)我们把设未知数列方程解应用题的方法叫做代数方法。把不设未知数用算术式求解的方法,叫做算术方法。随着学习的深入,接触到的问题越来越复杂,你将逐步体会到代数方法的优越性,感到列方程解应用题的简捷美。二、例题讲解例1某校七年级同学参加这一次公益活动,其中15%的同学去作保护环境的宣传,剩下的170名同学去植树、种草。七年级共有多少名同学参加这次公益活动?怎样用方程来解决这个问题呢?列方程解决实际问题,关键是找出含有所求数量的等量关系。本题中的等量关系是作保护环境宣传的人数+植树种草的人数=七年级参加公益活动的人数。如果我们设七年级共有名同学参加这次公益活动,请同学们填写下表:做环保宣传的同学/名植树种草的人/名参加公益活动的同学/名在这个等量关系中,参加保护环境宣传的人数和七年级参加公益活动的总人数都是未知数,已知参加保护环境宣传的人数是参加公益活动总人数的15%,所以我们设七年级共有x名同学参加公益活动,那么参加保护环境宣传的人数可表示为(15%x)。根据等量关系书写解答全过程(15%x+170=x)。然后按教科书写出解答全过程。三、提出问题,共同探究问题:小两台拖拉机一天共耕耘地面积是19公顷,其中,大拖拉机耕地的面积比小拖拉机耕地面积的2倍还多1公顷。这两台拖拉机一天各耕地多少公顷?一起探究:1.本题中已知量由哪些?答:(1)大、小两台拖拉一天耕地19公顷。(2)大拖拉机耕地的面积比小拖拉机耕地面积的2倍还多1公顷。2.求什么?3.本题中含有的所求数量的等量关系是什么?答:拖拉机一天耕地公顷数+小拖拉机一天耕地公顷数=19。4.若设小拖拉机一天耕地x公顷,请你填写教科书P16的表格。然后自助完成列方程并且写出完整的解题过程。用投影展示学生解题过程。解:设小拖拉机一天耕地x公顷,依题意,列方程:2119xx解这个方程,得6x。故2126113x或19-6=13。答:小拖拉机一天耕地6公顷,大拖拉机一天耕地13公顷。5.若本题设大拖拉机耕地x公顷,那么该选项哪个等量关系列方程比较好呢?请你试一试,并比较两种解法。解法二:等量关系为:大拖拉机一天耕地公顷数=2×小拖拉机一天耕地公顷数+1即2(19)1xx显然解法一简便。通过上面问题的解答,你能说出列一元一次方程解运用问题的一般步骤吗?一般步骤如下:1.认真审题,找出能够表达题目含义的等量关系;2.分析等量关系中,已知量与未知量的关系,适当设未知数x;3.将等量关系中,其余的未知量用含x的代数式表示,再根据等量关系,列出方程;4.解这个方程;5.检验答案是否合理、正确(不必写出来)。最后写答案。四、课堂练习课本P16练习1,2。五、课堂小结本节课主要分析了一元一次方程应用题的方法和步骤。要掌握列方程解应用题的本领,首先小分析题意时,必须明确哪些是已知量,哪些是未知量,它们之间又什么关系,然后找出能表示题目含义的等量关系。六、课后作业课本P171,2,3,4。七、板书设计一元一次方程的应用解说论文一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到用一元一次方程解决实际问题(一)一、情景导入二、例题讲解例1三、提出问题,共同探究列一元一次方程解运用问题的一般步骤启蒙作用,以及对其他学科的学习的应用。在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。二:学情分析:1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。4:学生在学习中可能习惯于用算术方法分析已知数与未知数,未知数与已知数之间的关系,对于较为复杂的应用题无法找出等量关系,随便行事,乱列式子。5:学生在学习过程中可能不重视分析等量关系,而习惯于套题型,找解题模式。三:教学策略:如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:1:“读(看)——议——讲”结合法2:图表分析法3:教学过程中坚持启发式教学的原则教学的理论依据是:1:必须先明确根据应用题题意列方程是重点,同时也是难点的观点,在教学过程中帮助学生抓住关键,克服难点,正确列方程弄清楚题意,找出能够表示应用题全部含义的一个相等关系,并列出代数式表示这相等关系的左边和右边。为此,在教学过程中要让学生明确知晓解题步骤,通过例1可以让学生大致了解列出一元一次方程解应用题的方法。2:在教学过程中要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的一个相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案,在设未知数时,如有单位,必须让学生写在字母后,在本例教学中,关键在于找出这个相等关系,将其中涉及待求的某个数设为未知数,其余的数用已知数或含有已知数与未知数的代数式表示,从而列出方程。在例1中的相等关系比较简单明显,可通过启发式让学生自己找出来。在例1教学中同时让学生巩固解一元一次方程应用题的五个步骤,特别是第2步是关键步骤。3:针对学生在列方程解应用题中可能存在的三个方面的困难,在教学过程中有意识加以解决,特别是学生抓不准相等关系这方面,可以让学生通过表格,图表等形式帮助学生找出相等关系表示成方程。如例1在分析过程中通过表格让学生明了清楚直观解决列方程的难点。4:通过图表对比使学生更直观,理解更深刻,同时,降低了理论教学的难度和分量,提高课堂教学效益(教学手段)。5:在课后习题的安排上适当让学生通过模仿例题的思想方法,加深学生解应用题的能力,这主要由于学生刚刚入门,多进行模仿,习惯以后,再做与例题不一样的习题,可以提高运用知识能力,同时让学生进行一题多解,找出共同点,区别或最佳列法,以开阔学生的思路。四:教学程序:(一):课堂结构:复习提问,导入讲授新课,课堂练习,巩固新课,布置作业五个部分。(二):教学简要过程:1:复习提问:(1):什么叫做等式?(2):等式与方程之间有哪些关系?(3):求X的15%的代数式。(4):叙述代数式与方程的区别。(理由是:通过复习加深学生对等式,方程,代数式之间关系的理解,有利于学生熟练正确根据题意列出一元一次方程,从而有利降低本节的难度。)2:导入讲授新课:(1):教具:一块小黑板,抄15页例1题目及相对应的空表格。左边右边(2):新课引述:(3):讲述课文15页例1:(目的是:要求学生认真读懂题目,寻找反映题目的全部含义的相等关系,必须根据题目关系,切勿盲目性)通过理解启发学生寻找出相等关系。
本文标题:裴小艳教学设计及解说论文
链接地址:https://www.777doc.com/doc-2093478 .html