您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 西工大,西电第二章连续系统时域分析--答案
第二章习题2-1.图题2-1所示电路,求响应u2(t)对激励f(t)的转移算子H(p)及微分方程。答案解其对应的算子电路模型如图题2.1(b)所示,故对节点①,②可列出算子形式的KCL方程为0)(111)(1)()(1)(1312121tupptuptftuptup即0)(1)()()()(13122121tupptutpftutup联解得)()()(443)(22tfpHtfpptu故得转移算子为443)()()22pptftupH(u2(t)对f(t)的微分方程为)()(tftupp34422即)(tftutudtdtudtd3)(4)(4)(222222-2图题2-2所示电路,求响应i(t)对激励f(t)的转移算子H(p)及微分方程。答案解其对应的算子电路模型如图2.2(b)所示。故得)()(tfpppppptfti3011101022221.01)(2故得转移算子为30111010)()()(2ppptftipHi(t)对f(t)的微分方程为)()1010()()3011(2tfptipp即)(10)(10)(30)(11)(22tftfdtdtitidtdtidtd2-3图题2-3所示电路,已知uC(0-)=1V,i(0-)=2A。求t0时的零输入响应i(t)和uC(t)。答案解其对应的算子电路模型如图题2.3(b)所示。故对节点N可列写出算子形式的KCL方程为0)(2312tuppC又有uc(t)=pi(t),代入上式化简,即得电路的微分方程为1)0()0(2)0()0(0)()23(2ccuuiitipp电路的特征方程为0232pp故得特征根(即电路的自然频率)为p1=-1,p2=-2。故得零输入响应的通解式为tttptpeAeAeAeAti2212121)(又tteAeAti2212)(故有2)0(21AAi(1)212)0(AAi又因有)()(tiLtuc故)0()0(iLuc即1)2(21AAL即1221AA(2)式(1)与式(2)联解得A1=5,A2=-3。故得零输入响应为035)(2tAeetitt又得065351)()(22tVeeeedtddttdiLtuttttc解其对应的算子电路模型如图题2.3(b)所示。故对节点N可列写出算子形式的KCL方程为0)(2312tuppC又有uc(t)=pi(t),代入上式化简,即得电路的微分方程为1)0()0(2)0()0(0)()23(2ccuuiitipp电路的特征方程为0232pp故得特征根(即电路的自然频率)为p1=-1,p2=-2。故得零输入响应的通解式为tttptpeAeAeAeAti2212121)(又tteAeAti2212)(故有2)0(21AAi(1)212)0(AAi2-4图题2-4所示电路,t0时S打开,已知uC(0-)=6V,i(0-)=0。(1)今于t=0时刻闭合S,求t0时的零输入响应uC(t)和i(t);(2)为使电路在临界阻尼状态下放电,并保持L和C的值不变,求R的值。答案解(1)t0时S闭合,故有ViLuc6)0()0(0)0()0(iit0时的算子电路模型如图题2.4(b)所示。故得t0电路的微分方程为)41)(415.2()()415.2()(ccpuptiptu)(161)(45.22tuptpucc即0)(142.51612tuppc即0)0()0(6)0()0(0)()1610(2iiuutuppccc其特征方程为p2+10p+16=0,故得特征根(即电路的自然频率)为p1=-2,p2=-8。故得零输入响应uc(t)的通解形式为ttceAeAtu8221)(又有ttceAeAtu822182)(故)82()(8221tteAeACtuC即)82(41)(8221tteAeAtiVtteAeA8221221即tteAeAti8221221)(故有0221)0(6)0(2121AAiAAuc联解得A1-=8,A2=-2。故得028)(82tVeetuttc又得044)(82tAeedtduCtittc2-5图题2-5所示电路,(1)求激励f(t)=δ(t)A时的单位冲激响应uC(t)和i(t);(2)求激励f(t)=U(t)A时对应于i(t)的单位阶跃响应g(t)。答案解(1)该电路的微分方程为)()()()(22tftitidtdRLtidtdLC代入数据并写成算子形式为)(4)(4)()45(2ttftipp故得)(454)(2tppti)(4134)(1134)(434134tptptpp故得AtUeetitt)(3434)(4进一步又可求得uc(t)为ttceedttdiLtu43163425.0)()(VtUeett)(34314(2)因有dtUt)()(,故根据线性电路的积分性有dUeeditgtt)(3434)()(4AtUeett)(3134142-6图题2-6所示电路,以uC(t)为响应,求电路的单位冲激响应h(t)和单位阶跃响应g(t)。答案解电路的微分方程为)(22322tfuucdtducdtdc写成算子形式为)(2)()23(2tftuppc⑴当Vttf)()(时,有)()(thtuc。故得单位冲击响应为)(212)(232)(2tpptppth)(22)(12tptpVtUeeeetttt)()(22222⑵当f(t)=U(t)V时,有uc(t)=g(t)。故得dUeedhtgtt)()(2)()(2VtUeedeet)()12()(22022-7求下列卷积积分(1)t[U(t)-U(t-2)]*δ(1-t);(2)[(1-3t)δ’(t)]*e-3tU(t)答案解⑴原式=)1()2()(ttUtUt)3()1()1(tUtUt⑵原式=)()(3)()(33tUetttUettt)()()(3)(33tUettttUett)()(3)()(333ttUettUett2-8已知信号f1(t)和f2(t)的波形如图题2-8(a),(b)所示。求y(t)=f1(t)*f2(t),并画出y(t)的波形。答案解(a))1(1)(1tUtf)1()()1(2tUetft故)()()(211tftfty)1()1(1)1(tUetutdUetUdUe)1()1()1()1()1(11)1(1)1(tdede0,2,0,1)()1(1tettUetty1(t)的波形如图.2.8(c)所示(b))1()(),(sin)(21tUtfttUtf,故)1()(sin)()()(212tUttUtftftydtUU)1()(sin)1()1cos(1)1(sin10tUttUdty2(t)的波形如图.2.8(d)所示2-9图题2-9(a),(b)所示信号,求y(t)=f1(t)*f2(t),并画出y(t)的波形。答案解利用卷积积分的微分积分性质求解最为简便。tdftf)()(21和的波形分别如图2.9(c),(d)所示。故tdftftftfty)()()()()(221y(t)的波形如图题2.9(e)所示.2-10.已知信号f1(t)与f2(t)的波形如图题2-10(a),(b)所示,试求y(t)=f1(t)*f2(t),并画出y(t)的波形。答案解(a).)1()1()()()()(1211tttftftfty)1()1(11tftfy1(t)的波形如图题2.10(c)所示(b).)()()(212tftfty)3()2()1()(1ttttf)3()2()1(111tftftfy2(t)的波形如图题2.10(d)所示2-11.试证明线性时不变系统的微分性质与积分性质,即若激励f(t)产生的响应为y(t),则激励)(tfdtd产生的响应为)(tydtd(微分性质),激励tdf)(产生的响应为tdy)((积分性质)。答案解(1)设系统的单位冲激响应为h(t),则有)()()(thtfty对上式等号两端求一阶导数,并应用卷积积分的微分性质,故有)()()(tfdtdthtydtd(证毕(2))()()(thtfty对上式等号两端求一次积分,并应用卷积积分的积分性质,故有ttdfthdy)()()((证毕)2-12.已知系统的单位冲激响应h(t)=e-tU(t),激励f(t)=U(t)。(1).求系统的零状态响应y(t)。(2).如图题2-12(a),(b)所示系统,)()(21)(,)()(21)(21thththththth求响应y1(t)和y2(t)(3).说明图题2-12(a),(b)哪个是因果系统,哪个是非因果系统。答案解(1))()()()()(tUtUetfthtyt)()1()(tUetyt(2))()()()(211ththtfty)()(21)()(21)(ththththtU0,10,)()()()(ttetUetUthtUtt)()()()(212ththtfty)()(21)()(21)(ththththtU)()1()()(tUethtUt(3)因f(t)=U(t)为因果激励,但y1(t)为非因果信号,y2(t)为因果信号,故图题2.12(a)为非因果系统,图题2.12(b)为因果系统。2-13.已知激励)()(5tUetft产生的响应为)(sin)(ttUty,试求该系统的单位冲激响应h(t)。答案解因有y(t)=f(t)*h(t),即)(*)()(sin5thtUettUt对上式等号两端同时求一阶导数,并应用卷积积分的微分性质有)(*)()(5)(cos5thttUettUt)()(*)(55ththtUet)()(sin5thttU故得系统的单位冲激响应为)()cossin5()(tUttth2-14.已知系统的微分方程为)()(2)(3)(tftytty。(1).求系统的单位冲激响应h(t);(2).若激励)()(tUetft,求系统的零状态响应y(t)。答案解(1)其算子形式的微分方程为)()(232tftypp故得)(231)(2tfppty当)()(ttf
本文标题:西工大,西电第二章连续系统时域分析--答案
链接地址:https://www.777doc.com/doc-2094259 .html