您好,欢迎访问三七文档
武汉理工大学信息处理课群综合训练与设计报告书目录摘要..................................................................................................................................................1一.盲分离原理...............................................................................................................................31.1盲信号处理的基本概念...................................................................................................31.2盲信号处理的方法和分类................................................................................................31.3盲源分离法.......................................................................................................................41.3.1盲源分离技术.......................................................................................................41.3.2盲分离算法实现...................................................................................................4二.ICA基本原理..........................................................................................................................5三.FastICA算法原理及实现......................................................................................................63.1数据的预处理.................................................................................................................63.2FastICA算法原理..........................................................................................................73.3FastICA算法的基本步骤及流程图..............................................................................9四.图像的盲分离仿真与分析.....................................................................................................10五.总结.........................................................................................................................................14六.参考资料...............................................................................................................................15附录1matlab源程序...................................................................................................................16武汉理工大学信息处理课群综合训练与设计报告书1摘要简述了独立成分分析的基本原理以及利用FastICA算法进行信号分离的理论依据,并通过Matlab仿真实验实现了混合图像的盲分离,取得了较好的分离效果。结果表明该算法收敛速度快,有良好的分离效果,是一种行之有效的混合图像盲分离方法。关键词:独立成分分析FastICA盲分离武汉理工大学信息处理课群综合训练与设计报告书2AbstractIndependentComponentAnalysisisanewsignalprocessingmethodwhichDeveloprapidlyduringlastfewyears.Thispaperintroducesthebasicmodelofthealgorithm,analyzesthemathprincipleoffrequently-usedrapidfixed-pointalgorithmforindependentcomponentanalysis,andappliesthealgorithminblindseparationofthreeimageswhicharemixedrandomly.Theresultshowsthatthealgorithmiseffectiveandreliable.Keywords:IndependentComponentAnalysisFastICABlindSignalSeparation武汉理工大学信息处理课群综合训练与设计报告书3一.盲分离原理1.1盲信号处理的基本概念盲信号处理是现代数学信号处理、算智能学近年来迅速发展的重要方向。电子信息、通信、生物医学、图像增强、雷达、地球物理信号处理等众多领域有广泛的应用前景。盲信号处理就是利用系统(如无线信道、通信系统等)的输出观测数据,通过某种信号处理的手段,获得我们感兴趣的有关信息(如原来独立发射的信号等)。盲信号的研究是当前学术界的一个研究热点,而盲信号分离则是盲信号研究中的一个重要的课题。BSS是指从观测到的混合信号中分离出未知的源信号。盲信号中的“盲”意味着两个方面:第一,对源信号一无所知或只有少许的先验知识。第二,混合本身是未知的。这看似是一个不可能的任务,然而理论和实际都证实了只需要相当简单的假设,就可以得到该问题的解。这一特点使得BSS成为一种功能相当强大的信息处理方法。图1.1盲处理原理框图1.2盲信号处理的方法和分类在盲信号处理中,就源信号进过传输通道的混合方式而言,其处理方法可分为线性瞬时混合信号盲处理、线性卷积混合信号盲处理和非线性混合信号盲处理三类。根据通道传输特性中是否含有噪声、噪声特性(白噪声、有色噪声等)、噪声混合形式,可分为有噪声、无噪声盲处理,含加性噪声和乘性噪声混合信号盲处理等。混合矩阵分离矩阵噪声向量S(t)X(t)Y(t)武汉理工大学信息处理课群综合训练与设计报告书4按源信号和观测信号数目的不同可以将混合方式分为欠定、适定和超定情况;按源信号特性的不同分为:平稳、非平稳、超高斯、亚高斯、超高斯和亚高斯混合分离等。盲处理的目的可分为盲辨识和盲源分离两大类。盲辨识的目的是求得传输通道混合矩阵(新型混合矩阵、卷积混合矩阵、非线性混合矩阵等)。盲源分离的目的是求得源信号的最佳估计。当盲源分离的各分量相互独立时,就称为独立分量分析,即独立分量分析是盲源分离的一种特殊情况。1.3盲源分离法1.3.1盲源分离技术盲源信号分离(BlindSourceSeparation,BSS)是20世纪90年代迅速发展起来的一个研究领域。它具有可靠的理论基础和许多方面的应用潜力。其在生物医学工程、医学图像、语音增强、遥感、通信系统、地震探测等领域有着广泛而诱人的前景,盲源分离成为信号处理和神经网络领域的研究热点。盲源分离是针对从检测的混合信号中估计或恢复源信号的问题提出的,是指源信号、传输通道特性未知的情况下,仅由观测信号和源信号的一些先验知识(如概率密度)估计出源信号各个分量的过程。例如最著名的鸡尾酒会问题,仅根据多个麦克风检测信号分离或恢复出某种语音源信号。1.3.2盲分离算法实现在实际的ICA盲分离算法应用中,一般有时是必需的对观测数据做一些预处理技术,如用主成分分析(PCA)降维和白化,用滤波器进行滤波降噪处理等。另外,由于恢复准则的局限以及先验知识的缺乏,盲信号分离方法只能得到源信号的波形,而无法确定信号的幅值以及信号之间的顺序。这两点都需要人为的制定规则(如规定信号的方差为1来确定幅值)来确定。武汉理工大学信息处理课群综合训练与设计报告书5二.ICA基本原理独立分量分析旨在对独立信源产生且经过未知混合的观测信号进行盲分离,从而重现原独立信源,其应用主要集中在盲源分离和特征提取两方面。ICA问题可简单描述为:设有N个未知的源信号NitSi,,1),(构成一个列向量TNStStS](t),),([)(1,其中,t是离散时刻,取值为0,1,2,……设A是一个NM维矩阵,一般称为混合矩阵(mixsingmatrix)。设TMtXtXtX)](,),([)(1是由M个可观察信号MitXi,,1),(构成的列向量,且满足下列公式1:NMtAStX),()(公式1BSS的问题是,对任意t,根据已知的)(tX在A未知的条件下求未知的)(tS。这构成一个无噪声的盲分离问题。设TMtNtNtN)](,),([)(1是由M个白色、高斯、统计独立噪声信号)(tNi构成的列向量,且)(tX满足下列公式2:NMtNtAStX),()()(公式2则由已知的)(tX在A未知是求)(tS的问题是一个有噪声盲分离问题。ICA的目的是对任何t,根据已知的)(tX在A未知的情况下求未知的)(tS,ICA的思路是设置一个NN维反混合阵)(ijwW,)(tX经过W变换后得到N维输出列向量TNtYtYtY)](,),([)(1,即有公式3:)()()(tWAStWXtY公式3整个过程可以表示成如图2.1所示:图2.1ICA的线性模型如果通过学习得以实现)(维单位阵是NNIIWA,则)()(tStY,从而达到了源信号分离目标。观测信号未知源信号恢复信号分离系统W混合系统AY(t)X(t)S(t)武汉理工大学信息处理课群综合训练与设计报告书6三.FastICA算法原理及实现ICA算法的研究可分为基于信息论准则的迭代估计方法和基于统计学的代数方法两大类,从原理上来说,它们都是利用了源信号的独立性和非高斯性。基于信息论的方法研究中,各国学者从最大熵、最小互信息、最大似然和负熵最大化等角度提出了一系列估计算法。如FastICA算法,Infomax算法,最大似然估计算法等。基于统计学的方法主要有二阶累积量、四阶累积量等高阶累积量方法。本课程设计主要讨论FastICA算法。3.1数据的预处理一般情况下,所获得的数据都具有相关性,所以通常都要求对数据进行初步的白化或球化处理,因为白化处理可去除各观测信号之间的相关性,从而简化了后续独立分量的提取过程,而且,通常情况下,数据进行白化处理与不对数据进行白化处理相比,算法的收敛性较好。若一零均值的随机向量TMZZZ,,1满足IZZ
本文标题:图像的盲分离
链接地址:https://www.777doc.com/doc-2103939 .html