您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 理学 > 二次函数的实际应用----最值问题以及设计方案问题
二次函数的实际应用——最大(小)值问题知识要点:二次函数的一般式cbxaxy2(0a)化成顶点式abacabxay44)2(22,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0a时,函数有最小值,并且当abx2,abacy442最小值;当0a时,函数有最大值,并且当abx2,abacy442最大值.如果自变量的取值范围是21xxx,如果顶点在自变量的取值范围21xxx内,则当abx2,abacy442最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y随x的增大而增大,则当2xx时,cbxaxy222最大,当1xx时,cbxaxy121最小;如果在此范围内y随x的增大而减小,则当1xx时,cbxaxy121最大,当2xx时,cbxaxy222最小二次函数极值问题1.二次函数2yaxbxc中,2bac,且0x时4y,则()A.4y最大B.4y最小C.3y最大D.3y最小2..已知二次函数22)3()1(xxy,当x=_________时,函数达到最小值。3..若一次函数的图像过第一、三、四象限,则函数()A.最大值B..最大值C.最小值D.有最小值4.若二次函数2()yaxhk的值恒为正值,则_____.A.0,0akB.0,0ahC.0,0akD.0,0ak5.函数92xy。当-2X4时函数的最大值为6.若函数322xxy,当24x函数值有最值为二次函数应用利润问题类型一1.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(3分)(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3分)(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?(4分)2.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q-收购总额)?类型二1.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高。某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y与投资量x成正比例关系,如图12-①所示;种植花卉的利润2y与投资量x成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润1y与2y关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?变试题1:某瓜果基地市场部为指导该基地某种蔬菜的生产销售,在对历年市场行情和生产情况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图所示。注:两图中的每个实心点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,图甲的图像是线段,图乙的图像是抛物线。请你根据图像提供的信息说明:.1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由;(3)已知市场部销售该种蔬菜,4、5两个月的总收益为48万元,且5月份的销量比4月份的销量多2万公斤,求4、5两个月销量各多少万公斤?2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x的一次函数.x(元)152030…y(件)252010…⑴求出日销售量y(件)与销售价x(元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?类型三为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?变式题1:.市“健益”超市购进一批20元/千克的绿色食品,如果以30元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y(千克)与销售单价x(元)(30x)存在如下图所示的一次函数关系式.⑴试求出y与x的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?⑶根据市场调查,该绿色食品每天可获利润不超过4480元,现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x的范围(直接写出答案).2.我区某工艺厂为迎接建国60周年,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,其中工艺品的销售单价x(元∕件)与每天销售量y(件)之间满足如图3-4-14所示关系.(1)请根据图象直接写出当销售单价定为30元和40元时相应的日销售量;(2)①试求出y与x之间的函数关系式;②若物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)。类型四为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?变式题:大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x为整数);又知前20天的销售价格1Q(元/件)与销售时间x(天)之间有如下关系:11Q302x(1≤x≤20,且x为整数),后10天的销售价格2Q(元/件)与销售时间x(天)之间有如下关系:2Q=45(21≤x≤30,且x为整数).(1)试写出该商店前20天的日销售利润1R(元)和后l0天的日销售利润2R(元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.421406080x(元)(万件)yO类型五青青商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;那种进货方案花钱最少?那种进货方案获利最大?(3)在“五·一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)变式题:我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐橙品种ABC每辆汽车运载量(吨)654每吨脐橙获得(百元)121610(1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;那种方案获得利润最大?最大利润是多少?2.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的三分之一。请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案课后练习某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:时间t(天)1361036…日销售量m(件)9490847624…未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为25t41y1(20t1且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式为40t21y2(40t21且t为整数)。下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a4)给希望工程。公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,求a的取值范围。在2012年年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x(元/千克)…25242322…销售量y(千克)…2000250030003500…(1)在如图的直角坐标系内,作出各组有序数对(x,y)所对应的点.连接各点并
本文标题:二次函数的实际应用----最值问题以及设计方案问题
链接地址:https://www.777doc.com/doc-2107389 .html