您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【沪教版】2014-2015学年上海市长宁区八年级第一学期期末数学试卷及详解
12014-2015学年上海市长宁区八年级(上)期末数学试卷一、单项选择题:(本大题共8题,每题2分,满分16分)1.函数y=自变量x的取值范围是()A.x≥3B.x≤3C.x>3D.x<32.下列二次根式中,与是同类二次根式的是()A.B.C.D.3.以下列各组数为边长的三角形中,能够构成直角三角形的是()A.32,42,52B.C.D.4.已知a、b、c是常数,且a≠0,则关于x的方程ax2+bx+c=0有实数根的条件是()A.b2﹣4ac<0B.b2﹣4ac>0C.b2﹣4ac≥0D.b2﹣4ac≤05.已知(x1,y1)和(x2,y2)是直线y=﹣3x上的两点,且x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能6.下列说法正确的是()A.三角形的面积一定时,它的一条边长与这条边上的高满足正比例关系B.长方形的面积一定时,它的长和宽满足正比例关系C.正方形的周长与边长满足正比例关系D.圆的面积和它的半径满足正比例关系7.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形8.下列说法错误的是()A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线B.到点P距离等于1cm的点的轨迹是以点P为圆心,半径长为1cm的圆C.到直线l距离等于2cm的点的轨迹是两条平行于l且与l的距离等于2cm的直线D.等腰△ABC的底边BC固定,顶点A的轨迹是线段BC的垂直平分线二、填空题:(本大题共12题,每题3分,满分36分)9.化简:=.10.方程:x(x﹣1)=2x的根是.211.在实数范围内分解因式:x2﹣x﹣3=.12.已知函数,则f(3)=.13.已知一次函数的图象y=kx+3与直线y=2x平行,则实数k的值是.14.反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是.15.已知一个两位数,个位上的数字比十位上的数字小4,且个位上的数字与十位上的数字的平方和比这个两位数小4,设个位上的数字为x,列出关于x的方程:.16.如图,AD是△ABC的角平分线,若△ABC的面积是48,且AC=16,AB=12,则点D到AB的距离是.17.已知三角形三个内角的度数之比3:2:1,若它的最大边长是18,则最小边长是.18.如图,CD是△ABC的AB边上的高,CE是AB边上的中线,且∠ACD=∠DCE=∠ECB,则∠B=°.19.某种货物原价是x(元),王老板购货时买入价按原价扣去25%,王老板希望对此货物定一个新价y(元),以便按新价八折销售时仍然可以获得原价25%的利润,则新价y与原价x的函数关系式是.20.如图,已知长方形ABCD纸片,AB=8,BC=4,若将纸片沿AC折叠,点D落在D′,则重叠部分的面积为.3三、解答题:(本大题共7题,满分48分)21.用配方法解方程:x2﹣4x﹣96=0.22.已知,求的值.23.化简:.24.弹簧挂上物体后会伸长(物体重量在0~10千克范围内),测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)有如下关系:x(千克)012345678y(厘米)1212.51313.51414.51515.516(1)此弹簧的原长度是厘米;(2)物体每增加一千克重量弹簧伸长厘米;(3)弹簧总长度y(厘米)与所挂物体的重量x(千克)的函数关系式是.25.等腰直角三角形ABC中,∠A=90°,∠B的平分线交AC于D,过点C向BD做垂线,并与BD延长线交于点E,求证:BD=2CE.26.已知等边△ABC的两个顶点坐标是A(0,0),B(,3).(1)求直线AB的解析式;(2)求△ABC的边长,直接写出点C的坐标.27.(12分)(2014秋•长宁区期末)如图,已知△ABC(AB>AC),在∠BAC内部的点P到∠BAC两边的距离相等,且PB=PC.(1)利用尺规作图,确定符合条件的P点(保留作图痕迹,不必写出作法);(2)过点P作AC的垂线,垂足D在AC延长线上,求证:AB﹣AC=2CD;(3)当∠BAC=90°时,判断△PBC的形状,并证明你的结论;4(4)当∠BAC=90°时,设BP=m,AP=n,直接写出△ABC的周长和面积(用含m、n的代数式表示).2014-2015学年上海市长宁区八年级(上)期末数学试卷参考答案与试题解析一、单项选择题:(本大题共8题,每题2分,满分16分)1.函数y=自变量x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.解答:解:根据题意得:3﹣x>0,解得x<3.故选D.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式中,与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:先将各选项化简,再根据同类二次根式的定义解答.解答:解:A、与被开方数相同,故是同类二次根式;B、与被开方数不相同,故不是同类二次根式;C、与被开方数不相同,故不是同类二次根式;D、与被开方数不相同,故不是同类二次根式;故选A.点评:此题考查同类二次根式的定义,正确对根式进行化简,以及正确理解同类二次根式的定义是解决问题的关键.3.以下列各组数为边长的三角形中,能够构成直角三角形的是()A.32,42,52B.C.D.考点:勾股定理的逆定理.分析:利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.解答:解:A、因为(32)2+(42)2≠(52)2所以三条线段不能组成直角三角形;B、因为22+()213≠()2所以三条线段能组成直角三角形;C、因为(1)2+(﹣1)2=()2,所以三条线段能组成直角三角形;D、因为()2+()2≠()2,所以三条线段不能组成直角三角形;故选:C.点评:此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.4.已知a、b、c是常数,且a≠0,则关于x的方程ax2+bx+c=0有实数根的条件是()A.b2﹣4ac<0B.b2﹣4ac>0C.b2﹣4ac≥0D.b2﹣4ac≤0考点:根的判别式.分析:根据关于x的方程ax2+bx+c=0(a≠0)有实数根的条件是△≥0即可得出正确的选项.解答:解:∵a、b、c是常数,且a≠0,∴关于x的方程ax2+bx+c=0有实数根的条件是:b2﹣4ac≥0,故选C.点评:本题考查了根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.已知(x1,y1)和(x2,y2)是直线y=﹣3x上的两点,且x1>x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.以上都有可能考点:一次函数图象上点的坐标特征.专题:数形结合.分析:根据正比例函数的增减性即可作出判断.解答:解:∵y=﹣3x中﹣3<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故选B.点评:此题考查了正比例函数的增减性,根据k的取值判断出函数的增减性是解题的关键.6.下列说法正确的是()A.三角形的面积一定时,它的一条边长与这条边上的高满足正比例关系B.长方形的面积一定时,它的长和宽满足正比例关系C.正方形的周长与边长满足正比例关系D.圆的面积和它的半径满足正比例关系考点:正比例函数的定义.分析:分别利用三角形、矩形、圆的面积公式得出函数关系,进而判断得出即可.解答:解:A、三角形的面积一定时,它的一条边长与这条边上的高满足反比例关系,故此选项错误;B、长方形的面积一定时,它的长和宽满足反比例关系,故此选项错误;C、正方形的周长与边长满足正比例关系,正确;D、圆的面积和它的半径满足二次函数关系,故此选项错误;故选:C.点评:此题主要考查了正比例函数的定义,正确把握各函数的定义是解题关键.7.如果三角形中两条边的垂直平分线的交点在第三条边上,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.等边三角形D.直角三角形考点:线段垂直平分线的性质.分析:根据题意,画出图形,用线段垂直平分线的性质解答.解答:解:如图,CA、CB的中点分别为D、E,CA、CB的垂直平分线OD、OE相交于点O,且点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴C是直角.故选D.点评:本题考查的是线段垂直平分线的性质,根据题意画出图形利用数形结合求解是解答此题的关键.8.下列说法错误的是()A.在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线B.到点P距离等于1cm的点的轨迹是以点P为圆心,半径长为1cm的圆C.到直线l距离等于2cm的点的轨迹是两条平行于l且与l的距离等于2cm的直线D.等腰△ABC的底边BC固定,顶点A的轨迹是线段BC的垂直平分线考点:轨迹.分析:根据角平分线的性质、圆的轨迹、平行线和等腰三角形的性质结合图形进行解答即可.解答:解:在一个角的内部(包括顶点)到角的两边距离相等的点的轨迹是这个角的平分线,A正确;到点P距离等于1cm的点的轨迹是以点P为圆心,半径长为1cm的圆,B正确;到直线l距离等于2cm的点的轨迹是两条平行于l且与l的距离等于2cm的直线,C正确;等腰△ABC的底边BC固定,顶点A的轨迹是线段BC的垂直平分线(BC的中点除外),D错误,故选:D.点评:本题考查的是点的轨迹,掌握角平分线的性质、圆的轨迹、平行线和等腰三角形的性质是解题的关键.二、填空题:(本大题共12题,每题3分,满分36分)9.化简:=3.考点:二次根式的性质与化简.分析:把被开方数化为两数积的形式,再进行化简即可.解答:解:原式==3.故答案为:3.点评:本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.10.方程:x(x﹣1)=2x的根是0或3.考点:解一元二次方程-因式分解法.分析:先移项,然后利用提取公因式法对等式的左边进行因式分解,最后解方程即可.解答:解:由原方程,得x(x﹣1﹣2)=0,即x(x﹣3)=0,所以x=0或x﹣3=0,解得x1=0,x2=3,故答案是:0或3.点评:本题考查了解一元二次方程﹣﹣因式分解法.因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.11.在实数范围内分解因式:x2﹣x﹣3=.考点:实数范围内分解因式.分析:首先解一元二次方程x2﹣x﹣3=0,即可直接写出分解的结果.解答:解:解方程x2﹣x﹣3=0,得x=,则:x2﹣x﹣3=.故答案是:.点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.若是关于一个字母的二次三项式分解,可以利用一元二次方程的求根公式进行分解,在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.12.已知函数,则f(3)=+1.考点:函数值.分析:根据函数关系式,把x的值代入,即可解答.解答:解:f(3)====;故答案为:+1.点评:本题考查了函数关系式,解决本题的关键是用代入法求解.13.已知一次函数的图象y=kx+3与直线y=2x平行,则实数k的值是2.考点:两条直线相交或平行问题.分析:由平行直线的特征可求得k的值.解答:解:∵一次函数的图象y=kx+3与直线y=2x平行,∴k=2.故答案为:2.点评:本题主要考查平行直线的特征,掌握平行直线的比例系数k相等是解题
本文标题:【沪教版】2014-2015学年上海市长宁区八年级第一学期期末数学试卷及详解
链接地址:https://www.777doc.com/doc-2109301 .html