您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 绝版生物化学重点知识总结
名词解释生物化学生物化学,是生命的化学,是研究生物体的化学组成和生命过程中的化学变化规律的一门科学。它是从分子水平来研究生物体(包括人类、动物、植物和微生物)内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。分子生物学分子生物学是以生物大分子为研究目标,通过对蛋白质、酶和核酸等大分子的结构、功能及其相互作用等运动规律的研究来阐明生命分子基础,从而探索生命奥秘的一门科学。它是由生物化学、遗传学、微生物学、病毒学、结构分析及高分子化学等不同研究领域结合而形成的一门交叉科学,目前已发展成生命科学中的带头学科。第四章蛋白质的化学蛋白质的一级结构蛋白质是由不同的氨基酸种类、数量和排列顺序,通过肽键而构成的高分子有机含氮化合物。它是蛋白质作用的特异性、空间结构的差异性和生物学功能多样性的基础。肽键是蛋白质分子中基本的化学键,它是由一分子氨基酸的α羧基与另一分子氨基酸的α氨基缩合脱水而成。肽单位肽键是构成蛋白质分子的基本化学键,肽键与相邻的两个α碳原子所组成的基团,称为肽单位或肽平面。多肽链是由许多重复的肽单位连接而成,它们构成肽链的主链骨架。蛋白质的二级结构蛋白质的二级结构是指多肽链的主链骨架中若干肽单位,各自沿一定的轴盘旋或折迭,并以氢键为主要的次级键而形成有规则的构象,如α螺旋、β折迭和β转角等。α螺旋蛋白质分子中多个肽键平面通过氨基酸α碳原子的旋转,使多肽链的主骨架沿中心轴盘曲成稳定的α螺旋构象。蛋白质的三级结构具有二级结构、超二级结构或结构域的一条多肽链,由于其序列上相隔较远的氨基酸残基侧链的相互作用,而进行范围更广泛的盘曲与折叠,形成包括主、侧链在内的空间排列,这种在一条多肽链中所有原子或基团在三维空间的整体排布称为三级结构。蛋白质的四级结构许多有生物活性的蛋白质由两条或多条肽链构成,肽链与肽链之间并不是通过共价键相连,而是由非共价键维系。每条肽链都有自己的一、二和三级结构,这种蛋白质的每条肽链被称为一个亚基。由两个或两个以上的亚基之间相互作用,彼此以非共价键相联而形成更复杂的构象,称为蛋白质的四级结构。超二级结构超二级结构又称模体或模序,是指在多肽内顺序上相邻的二级结构常常在空间折叠中靠近,彼此相互作用,形成有规则的二级结构聚集体。结构域结构域是位于超二级结构和三级结构间的一个层次。在较大的蛋白质分子中,由于多肽链上相邻的超二级结构紧密联系,进一步折叠形成一个或多个相对独立的致密的三维实体,即结构域。亚基亚基又称亚单位,原聚体或单体。一般由一条多肽链组成,也有由两条或更多的多肽链组成。亚基本身各具有一、二、三级结构。蛋白质的变性某些物理的和化学的因素使蛋白质分子的空间构象发生改变或破坏,导致其生物活性的丧失和一些理化性质的改变,这种现象称为蛋白质的变性作用。蛋白质的变构一些蛋白质由于受某些因素的影响,其一级结构不变而空间构象发生一定的变化,导致其生物学功能的改变,称为蛋白质的变构效应或别构作用。第五章核酸的化学核酸核酸是含有磷酸基团的重要生物大分子,因最初从细胞核分离获得,又具有酸性,故称为核酸。核酸在细胞内通常以与蛋白质结合成核蛋白的形式存在。天然的核酸分为两大类,即核糖核酸(RNA)和脱氧核糖核酸(DNA)。核酸的基本结构单位是单核苷酸,每个单核苷酸包括三部分:戊糖、含氮碱基和磷酸基。超螺旋DNADNA双螺旋进一步盘绕称超螺旋。超螺旋有正超螺旋和负超螺旋两种,负超螺旋的存在对于转录和复制都是必要的。转运RNA(tRNA)tRNA是细胞中一类最小的RNA,一般由73~93个核苷酸构成,分子量23000~28000,沉降系数为4S。tRNA约占细胞中RNA总量的15%。在蛋白质生物合成中tRNA起携带氨基酸的作用。细胞内tRNA的种类很多,每一种氨基酸都有与其相对应的一种或几种tRNA。核不均一RNA(HnRNA)hnRNA为存在于真核生物细胞核中不稳定的、大小不均的一组高分子RNA的总称,在核内主要存在于核仁的外侧。hnRNA多为信使RNA的前体,包括各种基因的转录产物及其成为mRNA前的各中间阶段的分子。信使RNA(mRNA)mRNA在细胞中含量很少,占RNA总量的3%~5%。mRNA在代谢上很不稳定,它是合成蛋白质的模板,每种多肽链都由一种特定的mRNA负责编码。mRNA的分子量极不均一,其沉降系数在4~25S间,mRNA的平均分子量约500000。核蛋白体RNA(rRNA)核蛋白体RNA是细胞中主要的一类RNA,rRNA占细胞中全部RNA的80%左右,是一类代谢稳定、分子量最大的RNA,存在于核蛋白体内。核蛋白体又称为核糖体或核糖核蛋白体,它是细胞内蛋白质生物合成的场所。小干涉RNA(SiRNAs)SiRNAs是含有21~22个单核苷酸长度的双链RNA,通常人工合成的SiRNA为22个碱基左右的单核苷酸双链RNA。细胞内的SiRNAs由双链RNA经特异RNA酶Ⅲ家族的Dicer核酸酶切割形成的19~21个碱基左右的双链RNA。微小RNA(miRNAs)miRNAs是一类含19~25单核苷酸的单链RNA,在3’-端有1~2个碱基长度变化,广泛存在于真核生物中不编码任何蛋白,本身不具有开放阅读框架,具有保守性、时序性和组织特异性。成熟的miRNA可以和上游或下游序列不完全配对而形成基环结构。核酸的变性与复性核酸分子具有一定的空间结构,维持这种空间结构的作用力主要是氢键和碱基堆积力。有些理化因素会破坏氢键和碱基堆积力,使核酸分子的空间结构改变,从而引起核酸理化性质和生物学功能改变,这种现象称为核酸的变性。变性核酸在适当条件下,可使两条彼此分开的链重新由氢键连接而形成双螺旋结构,这一过程称为复性。核酸杂交将不同来源的DNA经热变性,冷却,使其复性,在复性时,如这些异源DNA之间在某些区域有相同的序列,则会形成杂交DNA分子。DNA与互补的RNA之间也会发生杂交。增色效应核酸在变性时,e(p)值显著升高,此现象称为增色效应。染色质构成真核细胞的染色体物质称为染色质,具有三级结构的DNA和组蛋白紧密结合组成染色质。它们是不定形的,几乎是随机地分散于整个细胞核中,当细胞准备有丝分裂明,染色质凝集,并组装成因物种不同而数目和形状特异的染色体。染色体真核细胞有丝分裂和减数分裂时由染色质聚缩而成的结构,一般呈棒状,因易被碱性染料染色故称染色体。染色质是由核内的DNA与组蛋白、非组蛋白等结合形成的线状结构。基因基因指含有合成一个功能性生物分子(蛋白质或RNA)所需信息的一个特定DNA片段。基因组基因组指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。核基因组是单倍体细胞核内的全部DN分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。第六章酶酶酶是生物体内一类具有催化活性和特定空间构象的生物大分子,包括蛋白质和核酸等。酶与一般的催化剂不同,催化效率非常高,具有高度的专一性,催化活性受到调节和控制。核酶核酶又称催化RNA,核糖酶,类酶,酶性RNA,另有建议称“酉亥”。核酶是具有生物催化活性的RNA,其功能是切割和剪接RNA,底物是RNA分子。核酶的切割效率低,易被Rnase破坏。核酶作用于RNA,包括催化转核苷酰反应,水解反应(RNA限制性内切酶的反应)和连接反应(聚合酶活性)等。抗体酶抗体酶也叫催化抗体,是一类新的模拟酶。根据酶与底物作用的过渡态结构设计合成一些类似物——半抗原,用人工合成的半抗原免疫动物,以杂交瘤细胞技术生产针对人工合成半抗原的单克隆抗体,这种抗体具有与半抗原特异结合的抗体特性又具有催化半抗原进行化学反应的酶活性,称为抗体酶。活性中心酶的活性中心又称活性部位,是酶与底物结合并发挥其催化作用的部位。就功能而论,活性部位又可分为底物结合部位和催化部位。底物结合部位是与底物特异结合的有关部位,因此也叫特异性决定部位。催化部位直接参与催化反应,底物的敏感键在此部位被切断或形成新键,并生成产物。必需基团酶分子中与酶的活性密切相关的化学基团叫做酶的必需基团。酶的活性中心内的一些化学基团,是酶发挥催化作用与底物直接作用的有效基团,故称为活性中心内的必需基团。但酶活性中心外还有一些基团虽然不与底物直接作用,却与维持整个分子的空间构象有关,这些基团可使活性中心的各个有关基团保持最适的空间位置、间接地对酶的催化作用发挥其必不可少的作用,这些基团称为活性中心外的必需基团。辅酶酶的辅助因子包括辅酶和辅基。这是按其与酶蛋白结合的牢固程度来区分的。与酶蛋白结合比较疏松(一般为非共价结合)并可用透析方法除去的称为辅酶。辅基酶的辅助因子包括辅酶和辅基。这是按其与酶蛋白结合的牢固程度来区分的。与酶蛋白结合牢固(一般以共价键结合),不能用透析方法除去的称为辅基。转换数酶的转换数是指单位时间,每一个催化中心所转换的底物分子数。通常指每秒钟每个酶分子转换底物的微摩尔数(μmol)。因为Vmax=K3[Et],故转换数可表示如下:转换数(Kcat)=K3=][maxEtVKatal酶活力的单位。1Kat单位定义为,在最适条件下,每秒钟可使1摩尔(1mol/L)底物转化的酶量。米氏常数米氏常数Km为酶促反应速度达到最大反应速率一半时的底物浓度,单位是mol/L(摩尔/升),Km是酶的特征性常数。当pH、温度和离子强度等因素不变时,Km是恒定的。Km值的范围一般在10-7~10-1mol/L之间。比活力酶的纯度用比活力表示,比活力即每毫克蛋白(或每毫克蛋白氮)所含的酶活力单位数。比活力(纯度)=活力单位数/毫克蛋白(氮)诱导契合学说诱导契合学说认为:酶分子与底物的契合是动态的契合,当酶分子与底物分子接近时,酶蛋白受底物分子的诱导,其构象发生有利于同底物结合的变化,酶与底物在此基础上互补契合,进行反应。竞争性抑制竞争性抑制是较常见而重要的可逆抑制。它是指抑制剂(I)和底物(S)对游离酶(E)的结合有竞争作用,互相排斥,酶分子结合S就不能结合I,结合I就不能结合S。这种情况往往是抑制剂和底物争夺同一结合位置。竞争性抑制程度与[I]成正比,而与[S]成反比,故当底物浓度极大时,同样可达到最大反应速度,即抑制作用可以解除。非竞争性抑制非竞争性抑制是指底物S和抑制I与酶的结合互不相关,既不排斥,也不促进,S可与游离E结合,也可和EI复合体结合。同样I可和游离E结合,也可和ES复合体结合,但IES不能释放出产物。抑制程度只与[I]成正比,而与[S]无关。反竞争性抑制反竞争性抑制为抑制剂I不与游离酶E结合,却和ES中间复合体结合成EIS,但EIS不能释出产物。抑制程度既与[I]成正比,也和[S]成正比。激活剂凡能提高酶的活性,加速酶促反应进行的物质都称为激活剂。酶的激活剂可以是一些简单的无机离子,无机阳离子如Na+、K+、Ca2+、Mg2+、Cu2+、Zn2+、Co2+、Cr3+、Fe2+等,无机阴离子如Cl-、Br-、I-、CN-、NO3-、PO43-等。一些小分子的有机物如抗坏血酸、半胱氨酸、还原型谷胱甘肽等,对某些含巯基的酶具有激活作用。激活剂的作用是相对的,一种酶的激活剂对另一种酶来说,也可能是一种抑制剂。不同浓度的激活剂对酶活性的影响也不相同。酶原某些酶(绝大多数是蛋白酶)在细胞内合成或初分泌时没有活性,这些无活性的酶的前身称为酶原。使酶原转变为有活性酶的作用称为酶原激活。最适pH酶表现最大活力时的pH称为酶的最适pH。pH对不同酶的活性影响不同。最适温度化学反应的速度随温度增高而加快,但酶是蛋白质,可随温度的升高而变性。反应速度最大时的温度,称为酶的最适温度。寡聚酶寡聚酶含有2个以上的亚基,多的可含60个亚基,这些亚基巧妙地结合成具有催化活性的酶。寡聚酶可分为含有相同亚基的寡聚酶和含有不同亚基的寡聚酶两大类。同工酶同工酶是指能催化相同的化学反应,但分子结构不同的一类酶,它不仅存在于同一机体的不同组织中,也存在于同一细胞的不同亚细胞结构中,它们在生理上、免疫上、理化性质上都存在很多差异。诱
本文标题:绝版生物化学重点知识总结
链接地址:https://www.777doc.com/doc-2138072 .html