您好,欢迎访问三七文档
通信原理课程设计院(系):通信工程系班级:通信10-1班姓名:学号:1课程设计要求产生两路模拟语音信号,经过pcm编码、时分复用、DPSK调制经过同一个信道单向传输到对应的接收端。常用的三个模块;simulink、通信模块、信号处理模块。2数字通信系统的组成原理说明通常,按照信道中传输的是模拟信号还是数字信号,相应的把通信系统分为模拟通信系统和数字通信系统。又因数字通信系统拥有如下特点:⑴抗干扰能力强,无噪声积累。⑵保密性能好。⑶便于组成现代化数字通信网,便于实现多媒体通信。得到了广泛的应用。实现数字通信,首先必须使发送端发出的模拟信号变为数字信号,这个过程称为“模数转换”。模拟信号数字化最基本的方法有三个过程,第一步是“抽样”,就是对连续的模拟信号进行离散化处理,可以以相等的时间间隔来抽取模拟信号的样值,也可以不等间隔抽取。第二步是“量化”,将模拟信号样值变换到最接近的数字值。因抽样后的样值在时间上虽是离散的,但在幅度上仍是连续的,量化过程就是把幅度上连续的抽样也变为离散的。第三步是“编码”,就是把量化后的样值信号用一组二进制数字代码来表示,最终完成模拟信号的数字化。数字信号送入数字网进行传输。在传输数字信号时候,为了提高传输质量,提高传输的可靠性,通常要进行调制,调制的方式有多种,例如二进制相移键控2PSK,二进制频移键控2FSK,二进制振幅键控2ASK,差分二进制相移键控2DPSK等等。为了提高传输是新到的利用率,在调制之前,可将多路信号进行复用,包括频分复用,时分复用等等,通常数字通信系统中常用的的是时分复用。在接收端则是一个还原过程,把接收到得信号进行解调制,解复用申城多路数字信号。再把每一路数字信号解码变为模拟信号,即“数模转换”,从而再现原始信号。数字通信系统模型如图所示。3PCM基本原理通常把从模拟信号抽样,量化,直到变换成为二进制符号的基本过程,称为脉冲编码调制(PCM),有时也将其称为“模拟/数字(A/D)变换”。其原理方框图如图2-2所示,在simulink工具箱中抽样量化编码器则实现了这一功能,为了使编码后的信号可以在带通信道中传输,必须用数字基带信号控制载波,进行数字调制,因此采用了M-FSK对其进行了调制,在接收端用相反的方式进行了解调及解码,得到恢复信号。PCM仿真模型结构如图所示。脉冲编码调制(PCM)简称脉码调制,它是一种用二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。由于这种通信方式抗干扰能力强,因此在光钎通信、数字微波通信、卫星通信中均获得了极为广泛的运用。PCM信号的形成是模拟信号经过“抽样、量化、编码”三个步骤实现的。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和μ律方式,我国采用了A律方式,由于A律压缩实现复杂,常使用13折线法编码。3.1抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。在一个频带限制在(0,fh)内的时间连续信号f(t),如果以1/2fh的时间间隔对它进行抽样,那么根据这些抽样值就能完全恢复原信号。或者说,如果一个连续信号f(t)的频谱中最高频率不超过fh,当抽样频率fS≥2fh时,抽样后的信号就包含原连续的全部信息。这就是抽样定理。3.2量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图3.1所示量化器Q输出L个量化值ky,k=1,2,3,…,L。ky常称为重建电平或量化电平。当量化器输入信号幅度x落在kx与1kx之间时,量化器输出电平为ky。这个量化过程可以表达为:LkxQxQyyxxkkk,...,3,2,1,}{)(1这里kx称为分层电平或判决阈值。通常kkkxx1称为量化间隔。量化后的抽样信号于量化前的抽样信号相比较,当然有所失真,且不再是模拟信号。这种失真在接收端还原模拟信号是变现为噪声,并称为量化噪声。量化噪声的大小取决于把样值分级“取整”的方式,分的级数越多,即量化极差或间隔越小,量化噪声也越小。模拟信号的量化分为均匀量化和非均匀量化。由于均匀量化存在的主要缺点是:无论抽样值大小如何,量化噪声的均方根值都固定不变。因此,当信号()mt较小时,则信号量化噪声功率比也就很小,这样的话化信噪比就难以达到给定的要求。通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,对于弱信号时,均匀量化时的信号动态范围将受到较大的限制。为了克服这个缺点,实际中,往往采用非均匀量化。非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔v也小;反之,量化间隔就大。它与均匀量化相比,有两个突出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是压缩律和A压缩律。美国采用压缩律,我国和欧洲各国均采用A压缩律,因此,PCM编码方式采用的也是A压缩律。模拟入yx量化器量化值所谓A压缩律也就是压缩器具有如下特性的压缩律:AxAAxy10,ln1;11,ln1ln1xAAAxy3.3编码所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。量化后的抽样信号在一定的取值范围内仅有有限个可取的样值,且信号正、负幅度分布的对称性使正、负样值的个数相等,正、负向的量化级对称分布。若将有限个量化样值的绝对值从小到大依次排列,并对应的依次赋予一个十进制数字代码,在码前以“+”、“—”号为前缀,来区分样值的正负,则量化后的抽样信号就转化为按抽样时序排列的一串十进制数字码流,即十进制数字信号。把量化的抽样信号变换成给定字长的二进制码流的过程为编码。在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。通信中一般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。3.4时分多路复用时分多路复用(TDM)是按传输信号的时间进行分割的,它使不同的信号在不同的时间内传送,将整个传输时间分为许多时间间隔(Slottime,TS,又称为时隙),每个时间片被一路信号占用。TDM就是通过在时间上交叉发送每一路信号的一部分来实现一条电路传送多路信号的。电路上的每一短暂时刻只有一路信号存在。因数字信号是有限个离散值,所以TDM技术广泛应用于包括计算机网络在内的数字通信系统,而模拟通信系统的传输一般采用FDM。如上图电话通信为例说明时分多路复用的过程:发送端的各路话音信号经低通滤波器将带宽限制在3400Hz以内,然后加到匀速旋转的电子开关SA1上,依次接通各路信号,它相当于对各路信号按一定的时间间隙进行抽样。SA1旋转一周的时间为一个抽样周期T,这样就做到了对每一路信号每隔周期T时间抽样一次,此时间周期称为1帧长。发送端电子开关SA1不仅起到抽样作用,同时还要起到复用和合路的作用。合路后的抽样信号送到编码器进行量化和编码,然后,将信号码流送往信道。在接收端,将各分路信号码进行统一译码,还原后的信号由分路开关SA2依次接通各分路,在各分路中经低通滤波器将重建的话音信号送往收端用户。在上述过程中,应该注意的是,发、收双方的电子开关的起始位置和旋转速率都必须一致,否则将会造成错收,这就是PCM系统中的同步要求。收、发两端的数码率或时钟频率相同叫位同步或称比特同步,也可通俗的理解为两电子开关旋转速率相同;收、发两端的起始位置是每隔1帧长(即每旋转一周)核对一次的,此称帧同步。这样才一能保证正确区分收到的哪8位码是属于一个样值的,又是属于哪一路的。为了完成上述同步功能,在接收端还需设有两种装置:一是同步码识别装置,识别接收的PCM信号序列中的同步标志码的位置;二是调整装置,当收、发两端同步标志码位置不对应时,需在收端进行调整使其两者位置相对应。以上两种装置统称为帧同步电路。时分多路复用不仅局限于传输数字信号,也可同时交叉传输模拟信号2.3二进制移相键控(2PSK)在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号.通常用已调信号载波的0°和180°分别表示二进制数字基带信号的1和0.二进制移相键控信号的时域表达式为e2PSK(t)=g(t-nTs)]cosωct其中,an与2ASK和2FSK时的不同,在2PSK调制中应选择双极性,即若g(t)是脉宽为Ts,高度为1的矩形脉冲时,则有发送概率为-cosωct,发送概率为1-P由公式可看出,当发送二进制符号1时,已调信号e2PSK(t)取0°相位,发送二进制符号0时,e2PSK(t)取180°相位.若用φn表示第n个符号的绝对相位,则有发送1符号180°,发送0符号这种以载波的不同相位直接表示相应二进制数字信号的调制方式,称为二进制绝对移相方式.二进制移相键控信号的典型时间波形如图所示.二进制移相键控信号的调制原理图如图所示.其中图(a)是采用模拟调制的方法产生2PSK信号,图(b)是采用数字键控的方法产生2PSK信号.(a)(b)2PSK信号的解调通常都是采用相干解调,解调器原理图如图下所示.在相干解调过程中需要用到与接收的2PSK信号同频同相的相干载波。图2-信号的解调原理图4.各模块的设计和仿真图形分析本实验是利用Simulink强大的工具箱和其建模的优势建立了PCM通信系统的仿真模型。Simulink工具是MATLAB软件提供的可以实现动态系统建模和仿真的软件包,它让用户把精力从语言编程转向仿真模型的构造,为用户省去了很多重复的代码编写工作。Simulink中的每个模块对我们来说都是透明的,我们只须知道模块的输入、输出和每个模块的功能,而不需要关心模块内部是如何实现的,留给我们的事情就是如何利用这些模块来建立仿真模型以完成自己的任务。至于Simulink中的各个模块在运行时是如何执行,时间是如何采样的,事件是如何驱动的等问题,我们可以不去关心。正是由于Simulink具有这些特点,所以它被广泛应用在通信仿真中。其中各个模块功能和参数设置如下:Zero-OrderHold:零阶保持器,作用是对输入的一段采样时间进行保持。Relay:继电模块,它的作用是实现在两个不同常数值之间进行切换。Saturation:限幅器,它的作用是将输入信号的幅度限制在一定范围内。本设计将输入信号幅度限制在[-1,+1]范围内。Abs:绝对值模块,它的作用是对输入数值取绝对值。A-LawCompressor:A率压缩器,它的作用是对输入信号进行A率压缩,本实验中A取87.6。Gain:增益模块,它的作用是对数值的大小增加或减小倍数。本设计中由于输入信号幅度限制在[-1,+1],因此为了便于编码将Gain的增益参数设为127/2。Quantizer:量化器,它的作用是就是把一个连续幅度值的无限数集合映射成一个离散幅度值。IntegertoBitConverter:整数点转换器,它的作用是将整数值转换为相应的二进制数值。本设计中由于量化值最大为127,因此此模块参数设为7,即将十进制整数转换为7位二进制数值。Mux:复用器,它的作用是将多路信号复用为一路信号。ToFrame:装帧器。Buffer:缓冲器。Scope:示波器,它的作用是显示输出信号波形。Product:相乘器,它的作用
本文标题:通信原理课程设计
链接地址:https://www.777doc.com/doc-2143032 .html