您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 第1-3-流体的运动.
1.3理想流体的流动本节重点:掌握理想流体模型;理解理想流体、流线、流管等物理概念;掌握理想流体的稳定流动的连续性原理;掌握贝努利方程的原理;一.基本概念:1.流体:具有流动性的液体和气体;2.流体动力学:研究流体的运动规律以及流体与其他物体之间相互作用的力学;二.流体动力学的应用:生物体液和氧分的输送,动物体内血液的循环,土壤中水分的运动,农田排灌、昆虫迁飞;§1.3.1理想流体的稳定流动一.基本概念1.流体的可压缩性:实际流体在外界压力作用下、其体积或密度会发生变化,即具有可压缩性;2.流体的粘滞性:实际流体在流动时.其内部有相对运动的相邻两部分之间存在类似两固体相对运动时存在的摩擦阻力(内摩擦力),流体的这种性质称为粘滞性。3.理想流体模型:绝对不可压缩、没有粘滞性的流体叫做理想流体;一般情况下,密度不发生明显变化的气体或者液体、粘滞性小的流体均可看成理想流体.二.流体的运动形式:1.一般流动形式:通常流体看做是由大量流体质点所组成的连续介质。流动的复杂性:一般情况流体运动时,由于流体各部分可以有相对运动,各部分质点的流动速度是空间位置的函数,又是时间t的函数2.定常流动:流体质点经过空间各点的流速虽然可以不同,但如果空间每一点的流速不随时间而改变,这样的流动方式称为定常流动,也称为稳定流动是一种理想化的流动方式。如:水龙头的涓涓细流、植物导管、动物毛细血管;不定常流动),,(zyxvv),,,(tzyxvv三.流线、流管1.流线:为了形象地描述定常流动的流体而引入的假想的直线或曲线流线上任意点的切线方向就是流体质点流经该点的速度方向稳定流动时,流线的形状和分布不随时间变化,且流线与流体质点的运动轨迹重合;流线的疏密程度可定性地表示流体流速的大小;流线不相交;2.流管:流体内部,通过某一个截面的流线围成的管状空间;流体质点不会任意穿出或进入流管;(与实际管道相似)流体可视为由无数个稳定的流管组成,分析每个流管中流体的运动规律,是掌握流体整体运动规律的基础;四.连续性原理1.推导过程:假设:①.取一个截面积很小的细流管,垂直于流管的同一截面上的各点流速相同;②.流体由左向右流动;③.流体具有不可压缩性;④.流体质点不可能穿入或者穿出流管;⑤.在一个较短的时间t内,流进流管的流体质量等于流出流管的流体质量(质量守恒),即:tt2211SS2211SS2.理想流体的连续性方程(连续性原理、流量方程):恒量S连续性原理:流体在同一细流管中作稳定流动时,通过任一截面S的体积流量保持不变。推广,对于不可压缩的实际流体,任意流管、真实导流管、流体管道都满足连续性原理。如果同一截面上流速相同,不可压缩的流体在流管中做稳定流动时流体的流速与流管的截面积S成反比,即截面大处流速小,狭窄处流速大。如:河水的流动体积流量:表示单位时间内流过任意截面S的流体体积,称为体积流量,简称流量,用QV表示,单位为m3/s.补充例题有一条灌溉渠道,横截面是梯形,底宽2m,水面宽4m,水深1m,这条渠道再通过两条分渠道把水引到田间,分渠道的横截面也是梯形,底宽1m,水面宽2m,水深0.5m,如果水在两条渠道内的流速均为0.2m/s,求水在总渠道中的流速?2211SS21312421Sm225.125.01221Smsm/1.0SS2121§1.3.3伯努利方程及其应用伯努利方程:理想流体在重力场中作稳定流动时,能量守衡定律在流动液体中的表现形式。伯努利方程是瑞士物理学家伯努利提出来的,是理想流体作稳定流动时的基本方程,对于确定流体内部各处的压力和流速有很大的实际意义、在水利、造船、航空等部门有着广泛的应用。一.伯努利方程的推导:稳定流动的理想流体中,忽略流体的粘滞性,任意细流管中的液体满足能量守恒和功能原理!设:流体密度,细流管中分析一段流体a1a2:a1处:S1,1,h1,p1a2处:S2,2,h2,p2经过微小时间t后,流体a1a2移到了b1b2,从整体效果看,相当于将流体a1b1移到了a2b2,设a1b1段流体的质量为m,则:121121Emghm=222221Emghm=机械能的增量:12EEE-=功能原理:系统受到非保守力做功,系统机械能的增量等于非保守力对系统作的功;外界对系统作的功?受力分析:不考虑流体的粘滞性,所以只有流体两端面所受压力做功tSptSp222111W=tSptSpmghmmghm222111121222)21(21=tStS2211V==VV)VV21(VV2121121222ppghgh=222212112121ghpghp=二.对于同一流管的任意截面,伯努利方程:恒量ghp221•含义:对于理想流体作稳定流动,在同一流管中任一处,每单位体积流体的动能、势能和该处压强之和是一个恒量。伯努利方程,是理想流体作稳定流动时的基本方程;对于实际流体,如果粘滞性很小,如:水、空气、酒精等,可应用伯努利方程解决实际问题;对于确定流体内部各处的压力和流速有很大的实际意义、在水利、造船、航空等部门有着广泛的应用。恒量221p在水平流动的流体中,流速大的地方压强小;流速小的地方压强大。“速大压小”在粗细不均匀的水平流管中,根据连续性原理,管细处流速大,管粗处流速小,因而管细处压强小,管粗处压强大;如:水流抽气机、喷雾器、内燃机的汽化器的基本原理都基于此;•一.水平流管的伯努利方程:1.3.4.伯努利方程的应用生活中“速大压小”的实例:1.在海洋中平行逆向航行的两艘大轮船,相互不能靠得太近,否则就会有相撞的危险,为什么?2.汽车驶过时,路旁的纸屑常被吸向汽车;3.简单的实验:用两张窄长的纸条,相互靠近,用嘴从两纸条中间吹气,会发现二纸条不是被吹开而是相互靠拢,就是“速大压小”的道理。应用实例1.水流抽气机、喷雾器空吸作用:当流体流速增大时压强减小,产生对周围气体或液体的吸入作用;水流抽气机、喷雾器就是根据空吸作用的原理(速度大、压强小)设计的。应用实例2.汾丘里流量计汾丘里管:特制的玻璃管,两端较粗,中间较细,在较粗和较细的部位连通着两个竖直细管。汾丘里管水平接在液体管道中可以测定液体的流量;恒量221vp22212112SSpp2S恒量SgHpp21222121222112SS2gHS,SS2gHS流速:22212122VSS2gHSSSQ体积流量:只要读出两个竖管的高度差,就可以测量流速和流量应用实例3.皮托管:常用的流速测定装置;驻点:当流体遇到障碍物受阻时,在障碍物前会有一点,该点流体静止不动,故称驻点;221vppBAgHppvBA22EP42,图1-41应用实例4.小孔流速:射流速率敞口的大液槽内离开液面h处开一小孔,液体密度为,液面上方是空气,在液槽侧面小孔处压强为大气压p0,求小孔处的液体流速?gh2托里拆利定律:忽略粘滞性,任何液体质点从小孔中流出的速度与它从h高度处自由落下的速度相等;注:S1S2由于液槽中液面下降很慢,可以看成是稳定流动,把液体作为理想流体;粘滞流体:如植物组织中的水分,人体及动物体内的血液以及甘油、蓖麻油。§1.4粘滞流体的流动一.牛顿粘滞定律层流:实际流体在流动时,同一横截面上各点流速并不相同,管中轴心处流速最大,越接近管壁,流速越小,在管壁处流速为零。这种各层流体流速有规则逐渐变化的流动形式,称为层流;每一层为与管同轴的薄圆筒,每一层流速相同,各层之间有相对运动但不互相混杂,管道中的流体没有横向的流动。(流速小时呈现的流动形式:河道、圆形管道)粘滞力:粘滞流体在流动中各层的流速不同,相邻两流层之间有相对运动,互施摩擦力,快的一层给慢的一层以向前的拉力;慢的一层则给快的一层以向后的阻力,这种摩擦力称为内摩擦,又称粘滞力;粘滞力和哪些因素有关?流体内相邻两层内摩擦力的大小:与两流层的接触面积大小有关;还与两流层间速度变化的快慢有关;
本文标题:第1-3-流体的运动.
链接地址:https://www.777doc.com/doc-2152868 .html