您好,欢迎访问三七文档
1第八章参数估计答案一、1、122222()()()(())EXEXDXEX12221,^1^2222211niiAXAXXXn2、①③④⑤是统计量,①④⑤是2的无偏估计量①:2222111111(())()(2)nnniiiiiiiEXXEXXnnn22221111(()2())(()(())2())nniiiiiiiEXEXDXEXEXnn2222221111(2)nniinn①是2的无偏估计量④:2211()1niiXXSn,22()ES,④是2的无偏估计量③:22111()niinXXSnn,222111()()nnnESESnnn,③不是2的无偏估计量⑤:21(0,2)iiXXN,令1iiiYXX,1,2,...,1in2221111111(())()()2(1)2(1)2(1)nnniiiiiiiEXXEYEYnnn222211111(()(()))(20)(1)22(1)2(1)2(1)nniiiiDYEYnnnn⑤不是2的无偏估计量3、44、1202()(;)()3xEXxfxdxxdx213,的矩估计量^133AX5、10.99,0.01,0.810.9,5x的置信区间:0.0050.005220.90.9,5,5ZZZZnnnnxx6、2S;6、(0,)X,10()22EX,12,的矩估计量^122AX二、1、D(用排除法);2、D;3、D;4、A;5、C5、A,的置信区间:2(1)StnnX,区间长度22(1)SLtnn,1,,2,2(1)tn,L三、1、将原题改为(;)(0,1,2,,0)!xePxxx(泊松分布)1)1()EX,1,^1AX,即的矩估计量为X2)11112()(,)!!!!innxinniiiiinxeeLPxxxxx112121ln()lnlnln(!!!)lnln(!!!)niinxnniniLexxxxnxxx1ln()niiXdLnd,令ln()0dLd,得11niixxn的最大似然估计值为x,的最大似然估计量为X2、1)11111()(,)()niiixxnnniiiLxee;1ln()lnniixLn12ln()niiXdLnd,令ln()0dLd,得11niixxn,3的最大似然估计量为X2)1111111()()()nnniiiiiEXEXEXnnnnnX是的无偏估计量3、1)已知,5n,0.05,22.321.522.021.821.421.45x置信区间0.0250.025220.30.3,21.4,21.455ZZZZnnxx2)未知,5n,0.05,21.4x,5211(21.4)4iiSx置信区间0.0250.02522(1),(1)21.4(4),21.4(4)55SSSStntnttnnxx4、0.1,置信区间0.050.052233,,ZZZZnnnnxxxx区间长度为0.05Zn,令0.052Zn,可求出n5、总体X服从(01)分布,X10pP1PX1,废品0,否则1()EXP,1P,6011114606015iiPXX四、1、将题目中()0D改为()0D()0E,2222()()(())()EDED2不是2的无偏估计量2、见一、填空题2,相合估计略去即可。4五、(1))96.18.2,96.18.2(nXnX即(1498.27,1501.73)(2)34.120,2,1222nunun000357.0,57.3,2222uun
本文标题:第八章参数估计答案
链接地址:https://www.777doc.com/doc-2190773 .html