您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 生物化学第二章蛋白质.
四、肽(peptide)一个氨基酸的α-羧基和另一个氨基酸的α-氨基脱水缩合而成的化合物。氨基酸之间脱水后形成的键称肽键(酰胺键)。当两个氨基酸通过肽键相互连接形成二肽,在一端仍然有游离的氨基和另一端有游离的羧基。氨基酸能以肽键相互连接形成长的、不带支链的寡肽(25个氨基酸残基以下)和多肽(多于25个氨基酸残基)。多肽仍然有游离的α-氨基和α-羧基。肽与肽键一个氨基酸的羧基与另一个氨基酸的氨基之间失水形成的酰胺键称为肽键,所形成的化合物称为肽。由两个氨基酸组成的肽称为二肽,由多个氨基酸组成的肽则称为多肽。组成多肽的氨基酸单元称为氨基酸残基。CCNCCNCCNCCNCCH2CHCH2CH2CH2COO-OHCO2HCH2CONH2OHCH3H3N+OOOOHHHHHHHHHSerValTyrAspGlnCH3N-端C-端肽键肽链写法游离α-氨基在左,游离α-羧基在右,氨基酸之间用“-”表示肽键。H2N-丝氨酸-亮氨酸-苯丙氨酸-COOHSer-Leu-Phe(S-L-F)肽的重要理化性质a.肽晶体的熔点都很高。b.肽的酸碱性质主要来自游离末端-NH2和游离末端-COOH以及侧链上可解离的基团。c.每一种肽都有其相应的等电点.d.肽也能发生茚三酮反应、Sanger反应、DNS反应和Edman反应;还可发生双缩脲反应。在生物体中,多肽最重要的存在形式是作为蛋白质的亚单位。也有许多分子量比较小的多肽以游离状态存在。这类多肽通常都具有特殊的生理功能,常称为活性肽(activepeptide)。如:脑啡肽;激素类多肽;抗生素类多肽;谷胱甘肽;蛇毒多肽等。几种重要的多肽L-Leu-D-Phe-L-Pro-L-ValL-OrnL-OrnL-Val-L-Pro-D-Phe-L-Leu短杆菌肽S(环十肽)由细菌分泌的多肽,有时也都含有D-氨基酸和一些非蛋白氨基酸。如鸟氨酸(Ornithine,缩写为Orn)。五、蛋白质的结构蛋白质是氨基酸以肽键相互连接的线性序列。在蛋白质中,多肽链折叠形成特殊的形状(构象)(conformation)。在结构中,这种构象是原子的三维排列,由氨基酸序列决定。蛋白质有四种结构层次:一级结构(primary)二级结构(secondary)三级结构(tertiary)四级结构(quaternary)Primarysecondarytertiaryquaternary1.蛋白质的一级结构(化学结构)一级结构就是蛋白质分子中氨基酸残基的排列顺序,即氨基酸的线性序列。在基因编码的蛋白质中,这种序列是由mRNA中的核苷酸序列决定的。一级结构中包含的共价键(covalentbonds)主要指肽键(peptidebond)和二硫键(disulfidebond)定义——1969年,国际纯化学与应用化学委员会(IUPAC)规定:蛋白质的一级结构指蛋白质多肽连中AA的排列顺序,包括二硫键的位置。其中最重要的是多肽链的氨基酸顺序,它是蛋白质生物功能的基础。胰岛素的一级结构CONHCαCα肽平面肽平面2蛋白质的二级结构二级结构的概念:多肽链在一级结构的基础上,按照一定的方式有规律的旋转或折叠形成的空间构象。其实质是多肽链在空间的排列方式。α-螺旋、β-折叠、β-转角、自由回转-螺旋(-helix)α-螺旋在许多蛋白中存在,如α-角蛋白、血红蛋白、肌红蛋白等,主要由α-螺旋结构组成。每3.6个氨基酸残基上升一圈,相当于0.54nm。多个肽键平面通过α-碳原子旋转,主链绕一条固定轴形成右手螺旋。相邻两圈螺旋之间借肽键中C=O和N-H形成许多链内氢健,即每一个氨基酸残基中的NH和前面相隔三个残基的C=O之间形成氢键,这是稳定α-螺旋的主肽链中氨基酸侧链R,分布在螺旋外侧,其形状、大小及电荷影响α-螺旋的形成。α-螺旋的结构要点酸性或碱性氨基酸集中的区域,由于同电荷相斥,不利于α-螺旋形成;较大的R(如苯丙氨酸、色氨酸、异亮氨酸)集中的区域,也妨碍α-螺旋形成;脯氨酸因其α-碳原子位于五元环上,不易扭转,加之它是亚氨基酸,不易形成氢键,故不易形成上述α-螺旋;甘氨酸的R基为H,空间占位很小,也会影响该处螺旋的稳定。影响α-螺旋稳定的因素β-折叠结构(β-pleatedsheet)是一种肽链相当伸展的结构。肽链(段)按层排列,依靠相邻肽链(段)上的羰基和氨基形成的氢键维持结构的稳定性。肽键的平面性使多肽折叠成片,氨基酸侧链伸展在折叠片的上面和下面。CαCαCαCαCαCαRRRRRRNNCNNCCC平行反平行多肽链呈锯齿状(或扇面状、片层状)排列成比较伸展的结构;相邻两个氨基酸残基的轴心距离为0.35nm,侧链R基团交替地分布在片层平面的上下方,片层间有氢键相连;有平行式和反平行式两种,平行式的折叠其Φ=-119。,Ψ=+113。。反平行折叠其Φ=-139。,Ψ=+135。。这种片层在丝心蛋白里大量存在。β-折叠结构结要点β-转角(β-turn)又称β-弯曲,β-回折或发夹结构。指蛋白质的多肽链在形成空间构象时经常会出现180。的回折,回折处的结构就称为β-转角。一般由四个连续的氨基酸组成,第一个氨基酸的羧基与第四个氨基酸的氨基形成氢键。也有一些是由第一个氨基酸的羧基与第三个氨基酸的氨基形成氢键。β-转角为了紧紧折叠成紧密的球蛋白,多肽链常常反转方向,成发夹形状。一个氨基酸的羰基氧以氢键结合到相距的第四个氨基酸的氨基氢上。N—1CH—CC2CHN—HO=C3CHNC—4CH—NRRHOHRROHOβ-转角经常出现在连接反平行β-折叠片的端头。自由回转(无规则卷曲)没有一定规律的松散肽链结构。酶的活性部位。超二级结构是指若干相邻的二级结构中的构象单元彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。是蛋白质二级结构至三级结构层次的一种过渡态构象层次。结构域是球状蛋白质的折叠单位。多肽链在超二级结构的基础上进一步绕曲折叠成紧密的近似球形的结构,具有部分生物功能。对于较大的蛋白质分子或亚基,多肽链往往由两个以上结构域缔合成三级结构。ααβββαβ折叠筒结构域(structuraldomain)在一些相对较大的蛋白质分子中,在空间折叠时往往先分别折叠成几个相对独立的区域,再组装成更复杂的球状结构,这种在二级或超二级结构基础上形成的特定区域称为结构域。它的结构层次介于超二级结构和三级结构之间。如图所示:一条多肽链中所有原子在三维空间的整体排布,称为三级结构,是包括主、侧链在内的空间排列。大多数蛋白质的三级结构为球状或近似球状。在三级结构中,大多数的亲水的R侧基分布于球形结构的表面,而疏水的R侧基分布于球形结构的内部,形成疏水的核心。3.蛋白质的三级结构三级结构特征纤维状蛋白质通常只含有一种二级结构,而球状蛋白质往往含有多种二级结构;球状蛋白质具有明显的折叠层次:一级结构→二级结构→超二级结构、结构域→三级结构或亚基→四级结构;球状蛋白质是紧密的球状或椭球状实体;疏水性侧链埋藏于球体分子内,亲水性侧链则暴露于表面;球状分子的表面有一个空穴(裂沟、凹槽或口袋),能结合配体,是蛋白质的活性部位;由二级结构向三级结构转变的主要力量是疏水作用。4蛋白质的四级结构二个或二个以上具有独立的三级结构的多肽链(亚基),彼此借次级键相连,形成一定的空间结构,称为四级结构。具有独立三级结构的多肽链单位,称为亚基或亚单位(subunit),亚基可以相同,亦可以不同。四级结构的实质是亚基在空间排列的方式.单独亚基,无生物学功能,当亚基聚合成为具有完整四级结构的蛋白质后,才有功能。肽键共价键次级键化学键一级结构氢键二硫键二、三、四级结构疏水键盐键范德华力三、四级结构5蛋白质分子中的共价键与次级键其中二硫键和疏水作用最主要维持三级结构的作用力氢键氢键(hydrogenbond)的形成常见于连接在一电负性很强的原子上的氢原子,与另一电负性很强的原子之间。氢键在维系蛋白质的空间结构稳定上起着重要的作用。氢键的键能较低(~12kJ/mol),因而易被破坏。氢键的形成:疏水键非极性物质在含水的极性环境中存在时,会产生一种相互聚集的力,这种力称为疏水键或疏水作用力。蛋白质分子中的许多氨基酸残基侧链也是非极性的,这些非极性的基团在水中也可相互聚集,形成疏水键,如Leu,Ile,Val,Phe,Ala等的侧链基团。范德华氏(vanderWaals)引力分子之间存在的相互作用力离子键(盐键)离子键(saltbond)是由带正电荷基团与带负电荷基团之间相互吸引而形成的化学键。在近中性环境中,蛋白质分子中的酸性氨基酸残基侧链电离后带负电荷,而碱性氨基酸残基侧链电离后带正电荷,二者之间可形成离子键。离子键的形成六、蛋白质分子结构与功能的关系蛋白质分子具有多样的生物学功能,需要一定的化学结构,还需要一定的空间构象。各种蛋白质都有特定的空间构象,而特定的空间构象又与它们特定的生物学功能相适应,蛋白质的结构与功能是高度统一的。⒈一级结构是空间构象的基础RNase是由124氨基酸残基组成的单肽链,分子中8个Cys的-SH构成4个二硫键,形成具有一定空间构象的蛋白质分子。在蛋白质变性剂(如8mol/L的尿素)和一些还原剂(如巯基乙醇)存在下,酶分子中的二硫键全部被还原,酶的空间结构破坏,肽链完全伸展,酶的催化活性完全丧失。当用透析的方法除去变性剂和巯基乙醇后,发现酶大部分活性恢复,所有的二硫键准确无误地恢复原来状态。若用其他的方法改变分子中二硫键的配对方式,酶完全丧失活性。这个实验表明,蛋白质的一级结构决定它的空间结构,而特定的空间结构是蛋白质具有生物活性的保证。2.前体与活性蛋白质一级结构的关系由108个氨基酸残基构成的前胰岛素原(pre-proinsulin),在合成的时候完全没有活性,当切去N-端的24个氨基酸信号肽,形成84个氨基酸的胰岛素原(proinsulin),胰岛素原也没活性,在包装分泌时,A、B链之间的33个氨基酸残基被切除,才形成具有活性的胰岛素(胰蛋白酶原的激活)。3蛋白质的一级结构与分子病现知几乎所有遗传病都与蛋白质分子结构改变有关,都称之为分子病。例如镰刀型贫血症,它是由于血红蛋白的β-亚基上的第六位氨基酸由谷氨酸变成了缬氨酸,导致血红蛋白的结构和功能的改变,其运输氧气的能力大大地降低,并且红细胞呈镰刀状。镰状细胞贫血(sick-cellanemia)从患者红细胞中鉴定出特异的镰刀型或月牙型细胞。β-链1234567Hb-AN-Val-His-Leu-Thr-Pro-Glu-Lys…Hb-SN-Val-His-Leu-Thr-Pro-Val-Lys…4蛋白质空间结构与功能的关系Hb由4条肽链组成:2α、2β,功能是运载O2。在去氧Hb亚基中有下列几对离子键:由于血红蛋白亚基之间存在大量离子键,使其构象呈紧张态,对氧的亲和力很低,第一个亚基与O2结合时,离子键的破坏较难,所需要的能量较多。当血红蛋白的一个亚基结合氧之后引起它的构象从紧张态变成松弛态,其它的离子键也依次破坏,此时破坏离子键所需要的能量也少,构象的变化导致血红蛋白对氧的亲和力大大增强,因此第四个亚基结合氧的能力比第一个大几百倍。1蛋白质的两性电离及等电点蛋白质是两性电解质在蛋白质分子中,由许多可解离的基团,如末端的氨基、羧基及侧链的咪唑基、胍基、巯基及羟基,也能向酸碱一样解离,因此,蛋白质是多价的两性电解质。蛋白质在其等电点偏酸溶液中带正电荷,在偏碱溶液中带负电荷,在等电点pH时为两性离子。等电点的定义当溶液在某一特定的pH时,蛋白质以两性离子的形式存在,正负电荷相等,净电荷为零,在电场中不向任何一方移动。此时,溶液的pH称为该蛋白质的等电点。七、蛋白质的性质等电点的性质:pI与分子中的酸碱性氨基酸的比例有关。在等电点时,蛋白质的溶解度最小,其它性质如粘度、渗透压及膨胀性等也都是最小。电泳:带电颗粒在电场中移动的现象。分子大小不同的蛋白质所带净电荷密度不同,迁移率即异,在电泳时可以分开。影响泳动速度的因素:A、电荷多少B、分子大小C、电场强度2蛋白
本文标题:生物化学第二章蛋白质.
链接地址:https://www.777doc.com/doc-2200125 .html