您好,欢迎访问三七文档
3.7电工基础郝志廷2015年9月模块1直流照明电路设计与测试电路及其模型1.1电路的基本物理量1.23.7▲典型问题如下图1-0所示为手电筒照明电路实物图。此电路小电珠发光强弱与哪些因素有关?干电池旧了后小电珠发光变暗的原因是什么?二节干电池是怎样一种连接关系?图1-0手电筒电路实物图▲知识能力目标1.掌握电路的基本概念及基本物理量,如电流、电压、电位、电功率。2.掌握关联方向与非关联方向对物理量计算公式的影响。3.熟练掌握全电路欧姆定律及电路的三种状态的特点。1.1电路及其模型1.1.1电路和电路模型1.1.2电流1.1.3电压与电动势1.1.4电流、电压的关联参与方向与非关联参考方向1.1.5电阻与电阻器1.1.6电能与电功率1.1.1电路和电路模型(model)1、概念:电路---------是电流的通路,是为了某种需要由某些电工设备或元件(电气器件)按一定的方式组合起来的。电路主要由电源、负载、连接导线及开关等构成。电源(source):提供能量或信号.负载(load):将电能转化为其它形式的能量,或对信号进行处理.导线(line)、开关(switch)等:将电源与负载接成通路.2、作用:1.实现电能的传输、分配与转换电池灯泡2.实现信号的传递与处理放大器扬声器话筒3、结构:电池灯泡电源:提供电能的装置负载:取用电能的装置中间环节:传递、分配和控制电能的作用放大器扬声器话筒直流电源直流电源:提供能源信号处理:放大、检波等负载信号源:提供信息负载大小的概念:负载增加指负载取用的电流和功率增加。4、电路模型:R+RoE-手电筒的电路模型灯泡开关电池导线S为了便于用数学方法分析电路,一般要将实际电路模型化,用足以反映其电磁性质的理想电路元件或其组合来模拟实际电路中的器件,从而构成与实际电路相对应的电路模型。5.电路的状态•1、通路状态•5.电路的状态2、断路或开路状态断路一般为故障,开路为工作需要,电路状态一样,电源两端或电路某处断开,电路中没有电流通过。对于电源来说,这种状态叫空载。开路的特点:电路中电流为零,电源端电压U等于电源电动势E。5.电路的状态•3、短路状态如果外电路被阻值近似为零的导体接通,这时电源就处于短路状态。在这种状态下,短路电流ID=E/RO非常大,由于电流未经负载直接流回电源,电源内阻RO极小,强大的短路电路极有可能烧毁电源和线路,造成重大事故,所以要严格防止,避免发生短路。防止短路最常用的方法是在电路上安装熔断器,不论高压、低压、强电、弱电,线路都要设可靠的短路保护。6.二端元件•1)、电阻元件•2)、理想电压源•3)、理想电流源1.1.2电流定义:电荷的定向移动形成电流。电流的大小规定用单位时间内通过导体横截面的电量多少来表示,即:电流基本单位:安培(A)。电流的常用单位有毫安(mA),微安(uA),1A=103mA=106μA,在电力系统中还用千安(KA),1kA=103A。(1-1)电流方向:规定正电荷移动的方向为电流的实际方向。如果电流方向不随时间变化称为直流电:tQdtdqI(1-2)电流实例,如图1-3至图1-9所示。图1-3雷电时的电流图1-4磁场中的电流图1-5太阳持续喷射出的带电粒子流图1-6极光中的电流图1-7弧焊时的电流图1-8电子束加工时的电流图1-9离子束加工时的电流1.1.2电压与电位1.电压与电位定义:电场力将单位正电荷从电场中的a点移到b点所做的功,称为a、b两点间的电压,即:abababWuUq(1-3)电压的基本单位是伏特(V),1伏特(V)=1J/C。电压的常用单位有毫伏(mV),微伏(uV),千伏(KV)。1V=103mV=106μV,1kV=103V。在实际使用中,仅仅知道两点间的电压数值往往是不够的,还必须知道这两点中哪一点电位高、哪一点电位低。什么是电位呢?图1-10电位的参考点定义:在电路中任选一点做为参考点,且规定参考点的电位为零,则某点的电位就是由该点到参考点的电压,如图1-10所示。即:0aaUV(1-4)单位与电压相同,为伏特(V)。通常参考点选择为地面或仪表机器的外壳,用接地符号“⊥”表示。某点电位为正,说明该点电位比参考点高;某点电位为负,说明该点电位比参考点低。电位是相对的,其大小、正负随电路参考点选择不同而变化。如果已知a、b两点的电位各为VaVb,则此两点间的电压:ababUVV(1-5)即两点间的电压等于这两点的电位之差。电压方向:规定把电位降低的方向作为电压的实际方向,因此电压又称作电压降。2.电动势电动势是描述电源性质的重要物理量。在电源内部,非静电力(如蓄电池中是化学力)把单位正电荷从电源负极经电源内部移到正极所做的功,称为电源的电动势。定义式:(2-6)单位:伏特,与电压相同。方向:在电源内部从负极指向正极。注意:电源在开路时两端的电压大小等于电源电动势,方向与之相反。1.2电流和电压的参考方向物理中对电量规定的方向。物理量单位实际方向电流IA、mA、μA正电荷运动的方向电动势EV、kV、mV、μV电位升高的方向(低电位高电位)电压U、V、kV、mVμV电位降低的方向(高电位低电位)1、实际方向:(2)、表示方法abIR电流:Uab双下标电压:+正负号-abUI(1)、概念:+_U-+EaRb在分析计算电路时,对电量任意假定的方向。箭标Iab双下标2、参考方向(正方向)箭标实际方向与参考方向一致,电流(或电压)值为正;实际方向与参考方向相反,电流(或电压)值为负。3、实际方向与参考方向的关系4、注意:在参考方向选定后,电流(或电压)值才有正负之分。对任何电路分析时都应先指定各处的i,u的参考方向。abIR例:若I=5A,则实际方向与参考方向一致,若I=-5A,则实际方向与参考方向相反。•当电压的参考方向指定后,指定电流从标以电压参考方向的“+”极性端流入,并从标“—”端流出,即电流的参考方向与电压的参考方向一致,也称电流和电压为关联参考方向。反之为非关联参考方向。5、关联参考方向:i+-Ru小结:(1)分析电路前必须选定电压和电流的参考方向。(2)参考方向一经选定,必须在图中相应位置标注(包括方向和符号),在计算过程中不得任意改变。u=Ri+–Riu+–Riuu=–Ri(3)参考方向不同时,其表达式符号也不同,但实际方向不变。1.3电功率和能量1、概念:电功率在电压电流关联参考方向下,电功率p可写成p(t)=u(t)i(t)p0表明元件吸收电能,p0表明元件释放电能。在电压电流非关联参考方向下,p(t)=u(t)i(t)p0表明元件释放电能,p0表明元件吸收电能电能量diuwtt)()(0单位在国际单位制中,电流(A),电荷(C)—库仑,电压(V),电能量(J)—焦耳,功率(W)—瓦特。1.4电阻元件•电阻是一种将电能不可逆地转化为其它形式能量(如热能、机械能、光能等)的元件。1.符号R2.欧姆定律(Ohm’sLaw)(1)电压与电流的参考方向设定为一致的方向Riu+uRiR称为电阻,电阻的单位:(欧)(Ohm,欧姆)伏安特性曲线:Rtg线性电阻R是一个与电压和电流无关的常数。令G1/RG称为电导则欧姆定律表示为iGu.电导的单位:S(西)(Siemens,西门子)uiO电阻元件的伏安特性为一条过原点的直线(2)电阻的电压和电流的参考方向相反Riu+则欧姆定律写为u–Ri或i–Gu注意:公式必须和参考方向配套使用!3.功率和能量Riu+Rip吸–ui–(–Ri)ii2R–u(–u/R)u2/Rp吸uii2Ru2/R功率:u+任何时刻,电阻元件绝不可能发出电能,它只能消耗电能。因此电阻又称为“无源元件”和“耗能元件”。Riu+–3.开路与短路对于一电阻R当R=0,视其为短路。i为有限值时,u=0。当R=,视其为开路。u为有限值时,i=0。*理想导线的电阻值为零。能量:可用功表示。从t到t0电阻消耗的能量:ttttttRdRiuidpdW02001.1.4电流、电压的关联参考方向与非关联参考方向1.参考方向电流的参考方向如示图2-17所示,则:(a)图参考正方向与实际方向一致,i0;(b)图参考正方向与实际方向相反,i0。图1-17电流的参考方向图图1-18电压的参考方向图电压的实际极性(用“+”、“-”表示)和参考方向(用剪头表示)如图2-18所示,若参考正方向与实际方向一致,则U0,如图(a)所示;参考正方向与实际方向相反,则U0,如图(b)所示。2.关联与非关联参考方向关联参考方向:元件上电流和电压的参考方向一致,即符合欧姆定律U=IR,这样的参考方向称为关联参考方向。非关联参考方向:元件上电流和电压的参考方向不一致,应用欧姆定律时要用公式U=-IR,这样的参考方向称为非关联参考方向。在关联与非关联两种情况下,含源支路端电压的计算式是不一样的,如图21-19图(a)~d)所示。图中箭头均为电压与电流的参考方向。图2-19关联、非关联情况电压的不同计算式2.1.5电阻与电阻器1.电阻与电导物体对电流的阻碍作用,称为该物体的电阻,用符号R表示。金属导体的电阻可用电阻定律来计算,即:(2-7)电阻的基本单位是欧姆(Ω),常用单位有千欧(KΩ)、兆欧(MΩ)。它们之间的换算关系是:1MΩ=103KΩ=106Ω。ρ为电阻率,是反映材料导电性能的物理量。据物体电阻率的大小可将物体分为导体、半导体、绝缘体三类。紫铜、铝、银的电阻率较小,属于良导体;硅、锗是半导体;纯净的陶瓷属于绝缘体。材料的电阻还与温度有关,金属材料的电阻一般随着温度的升高而成正比增大,可用下面公式来计算:11212)(RttRR(2-8)式中α为电阻温度系数.温度每升高1℃时,导体电阻的增加值与原来电阻的比值,叫做电阻温度系数,它的单位是1/℃。R1--温度为t1时的电阻值,R2--温度为t2时的电阻值。金属材料据电阻温度系数α的大小可作不同用途:α大,可以制成温度计;α小可以制成标准电阻。有些金属当温度下降到接近绝对零度时,电阻会突然变成零的现象称为超导现象,此时这种导体称为超导体。实际的超导材料因一定的温度下电阻值接近为零而使其在各种领域得到广泛的应用。当电阻值不变时,其上的电压与电流成线性关系,此类电阻可称为线性电阻。其伏安特性为一条过原点的直线,如图1-20(a)所示。非线性电阻的伏安特性是一条曲线,如图1-20(b)所示为二极管的伏安特性。图2-20电阻伏安关系图电阻的倒数称为电导,是表征材料导电能力的一个参数,用符号G表示:1GR电导的单位:西门子,简称西(S)。2.电阻器电阻器是对电流呈现阻碍阻碍作用的耗能元件的总称,如电炉、白炽灯、各种成品电阻器等。电阻器上的主要参数:标称电阻,额定功率和允许误差。标称阻值和允许误差一般会标在电阻体上,体积小的电阻则用色环标注。表1-9色环电阻的对照关系•(1)四色环电阻•四色环电阻就是指用四条色环表示阻值的电阻,从左向右数,如图所示。第色环电阻识别一道色环表示阻值的最大一位数字;第二道色环表示阻值的第二位数字;第三道色环表示阻值倍乘的数;第四道色环表示阻值允许的偏差(精度)。•例如一个电阻的第一环为红色(代表2)、第二环为紫色(代表7)、第三环为棕色(代表10倍)、第四环为金色(代表±5%),那么这个电阻的阻值应该是270Ω,阻值的误差范围为±5%。•(2)五色环电阻•五色环电阻就是指用五色色环表示阻值的电阻,从左向右数,如图所示。第一道色环表示阻值的最大一位数字;第二道色环表示阻值的第二位数字;第三道色环表示阻值的第三位数字;第四道色环表示阻值的倍乘数;第五道色环表示误差范围。•例如以个五色环电阻,第一环为红(代表2)、第二环为红(代表2)、第三环为黑(代表0)、第四环为黑(代表1倍)、第五环为棕色(代表±1%),则其阻值为220Ω×1=220Ω,误差范围为±1%。•这个规律有一个巧记的口诀:棕一红二橙是三,四黄五绿六为蓝,七紫八灰九对白,黑是零,金五银十表误差.例2-44环电阻,依次
本文标题:电工基础高职教程
链接地址:https://www.777doc.com/doc-2212199 .html