您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 热管转轮,板换的比较
热管、转轮、板式换热器热回收的比较随着我国经济实力的增长和人民物质文化生活水平的不断提高;高层建筑的迅速发展,高气密化、高隔热化影响到人们的工作和生活环境,人们对室内空气品质的要求也越来越高,都渴望拥有一个健康、舒适的室内环境,特别是经历了SARS、PM2.5的袭击,人们越来越注重室内空气品质,对引进室外新风换气提出了更高的要求,但是换气必然会带来能量的损失,引入新风需要消耗更多的能量,因此需要考虑一种有效的节能方法,通过热回收装置使新风和排风进行热交换。热交换器是空气调节和余热回收的关键装置。一、各类热交换器的性能与利用分析目前的热交换器有显热和全热回收两种形式。不同形式的性能、效率和利用方式,设备费的高低、维护保养的难易也各不相同,它们的综合比较如下表所示:下面介绍几种常用的热交换器。1.转轮式全热换热器转轮式换热器的表面为蜂窝状,涂上一层吸附材料作干燥剂。将转轮置于风道之间,使其分成两部分。来自空调房间的排风从一侧排出,室外空气以相反的方向从另一侧进入。为加大换热面积,轮子缓慢旋转(10~12转/分)。轮子的一半从较热空气中吸收存储热量,旋转到另一侧时,释放热量,使热量发生转移。附着表面的干燥剂将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收,旋转到另一侧时,将湿气释放到低湿度的气流里,这个过程将潜热转移。换热器旋转体的两侧设有隔板,使新风与排风逆向流动。转轮芯片用特殊的纸或铝箔制成,其表面涂上吸湿性涂层,形成热、湿交换的载体,它以10-12r/min的速度旋转,先把排风中的冷热量收集在蓄热体(转轮芯)里,然后传递给新风,空气以2.5-3.5m/s的流速通过蓄热体,靠新风与排风的温差和蒸汽分压差来进行热湿交换。所以,既能回收显热,又能回收潜热。1)转轮换热器的功能与适用范围2)转轮换热器的主要优缺点:3)影响转轮换热器效率的因素:a.空气流速:空气流过转轮时的迎风面流速越大,效率越低,反之效率则高,推荐风速2~4m/s。b.转轮两侧气流入口处,需要加装空气过滤器。c.设计时,必须计算校核转轮上是否会出现结霜、结冰现象;必要时应在新风管上设空气预热器,或在热回收器后设温度自控装置,当温度达霜点,就发出信号关闭新风阀门或开启预热器。d.由于全热交换器转轮需要动力,并且增加了阻力,从而增加输送动力和增加投资,因此,必须计算回收效应,当总能耗节约显著时,方可选用。e.适用于排风不带有害物或有毒物质的场所。2.低温热管换热器1942年,美国工程师提出了热管原理,20世纪60年代初,开始研究和试制,最早被用于航天器与核反应堆,20世纪70年代,热管换热器作为全新风系统中的热能回收装置而最终在暖通行业中体现出卓越的优越性。热管是靠自身内部液体的相变来实现热量传递的传热元件,它有以下特点:⑴每根热管都是永久性密封的,传热时没有额外的能量损耗,无运行部件,运行可靠性高。⑵热管换热器的结构决定了它是典型的逆流换热,热管又几乎是等温运行,因此热管换热器具有很高的效率。⑶因冷热气体的换热在热管的外表面进行容易扩展受热面积。⑷冷热气体中间用隔板隔开,没有泄漏,因此没有交叉污染问题。⑸由于流体流动通道宽敞,阻力损失小。⑹每根热管完全独立,维修方便。⑺从环境的适应性,余热回收效率、压力损失、防止堵塞、清洗、寿命等综合指标看,热管换热器占据优势。工作原理:热管由管壳、吸液芯和端盖组成,在抽成真空的管子里充以适当的工作液,再将其两端密封。热管既是蒸发器又是冷凝器。热流吸热的一端是蒸发段,工质吸收热后蒸发汽化,流动至另一端即冷凝段放热液化,并依靠毛细力作用流回蒸发段,自动完成循环。热管换热器由单根热管集装在一起,中间用隔板将蒸发段与冷凝段分开,热管换热器靠热管内工质的相变完成热量传递。每一根热管就是一个无动力的制冷循环系统,传热速度是相同金属的数千倍至万倍,0.1℃的温差即有热响应,它最初用于人造卫星上解决向阳面和背阴面的受热不均匀,是人造卫星上必备设备之一。现在,越来越广泛的用于空气调节和余热回收领域,日本早稻田大学的一位专家说:“日本特别重视节能和环保,而热管技术以其高效的传热性,为节能环保找到了一条新路”。热管换热器在暖通空调设计手册中均有介绍和选用方法。1)低温热管换热器的主要优缺点:2)设计注意事项:a.低温热管适用于温度-40℃~80℃,全年可使用,回收冷量时,角度与热量相反。b.迎面风速宜采用1.5~3.5m/s。c.冷、热端之间的间隔板,采用双层结构,可杜绝因漏风而造成交叉污染。d.换热器可垂直或水平安装,既可以几个并联,也可以几个串联。e.当气流的含湿量较大时,(此时有潜热回收,可作为余量)f.应设计凝水排除装置。g.启动换热器时,应使冷、热气流同时流动,或使冷气流先流动,停止时,应使冷、热气流同时停止,或先停止热气流。二、低温热管换热器节能与经济效益分析:按沈阳地区冬季室外-19℃,室内20℃计算如果排风量为30000立方米/时,能量损失为37万Kal/h,相当于0.7吨的锅炉每小时产生的热量。热管换热器每小时可回收的的热量按效率60%计算为22.2万Kal/h。1.板式热交换器的工作原理:利用特殊的纸质材料或铝泊装配成上下各层间隔而成的通道,进风通过单数层通道,排风通过双数层通道,通过空气与层板的接触传递热量,送风与排风逆流时效率最高,但逆流运动时,材料受力最大,容易吹破交换器,所以常采用叉流结构,作成全热时,表面应涂上吸湿性材料。板式换热器的优缺点:板式换热器设计选用时应注意:i.仅适用一般空调工程,当排风中含有有害成份时,不宜选用。ii.因阻力损失较大,为了在过渡季节能利用新风,减少能耗,在换热器旁应设计旁通风管,以便让新风从旁通通过。iii.与换热器连接的风管和旁通风管上,必须安装密闭性较好的风阀。ⅳ.安装的位置应便于芯体更换。热管换热器应用技术热管换热器的核心元件是热管。热管是一种新型相变高效传热元件,其独特的传热特性引起了人们的极大兴趣,应用领域从空间扩大到地面,从工业扩展到民用。然而,在热管技术蓬勃发展的今天,其在工业应用中仍然存在一些问题,会限制热管技术的使用和深入发展。笔者对这些问题进行了研究,并提出了合理的解决办法。1热管相容性早期的热管研究人员就注意到了管壳材料与工质的化学相容性问题,早期工业应用的热管一般采用铜材管壁或钢铜复合管,产品成本很高,限制了热管技术在工业上的广泛应用。钢水热管以其成本低、强度高、制造工艺简单及适应温度范围广得到了大家的认同,在工业上得到广泛的应用,然而钢水热管的使用寿命不足0.5a,无法满足工业应用的要求。通过多年的研究人们认识到,钢水热管中存在着化学反应和电化学反应,这是一种不可避免也不可能消除的金属腐蚀过程,只能抑制或延缓,因此,钢水热管相容性问题的对策只能是延长热管的使用寿命。1.1腐蚀机理由于管材与工质的化学不相容性,使得钢水热管内部发生腐蚀产生不凝气体氢气。氢气越多,换热效果越不好,氢气积聚到一定程度可以使热管完全丧失传热功能。1.1.1化学反应腐蚀热管长时间在较高的温度下工作,钢水会发生化学反应,在管内产生变化,其主要的化学反应过程如下:Fe+H2O=FeO+H2↑2Fe+3H2O=Fe2O3+3H2↑3Fe+4H2O=Fe3O4+4H2↑上述反应的结果使管壁发生腐蚀,产生FeO、Fe2O3和Fe3O4,同时产生一定量的不凝气体氢气。除Fe3O4外,其余两种氧化层(FeO和Fe2O3)不能阻止水的侵入,仍要与铁继续反应生成氢气。1.1.2电化学反应在钢水热管内,铁、杂质和水构成一种原电池。其中铁为阳极,杂质为阴极。杂质一般为FeC3、石墨等,为碳钢与水中所含。水的电离度虽小,但仍有少量的OH-和H+生成。管内主要的电化学反应过程如下:2H++2e=H2↑Fe-2e=Fe2+Fe2++2OH-=Fe(OH)2↓3Fe(OH)2=Fe3O4+2H2O+H2↑在高温有水的条件下上述反应进行得很快,普遍认为这是导致碳钢与水不相容的主要原因。1.2对策1.2.1碳钢管材表面钝化(1)高温蒸汽表面钝化采用该办法的目的是使管壁净化且生成致密的兰色Fe3O4氧化膜钝化层,这是一种稳定性极好的保护膜。具体的做法是将净化后的碳钢管加热至500~600℃,然后冲以水蒸气进行表面钝化,此时碳钢管内表面会生成致密而均匀的Fe3O4氧化层。(2)化学液钝化该方法也是使管壁生成Fe3O4氧化膜钝化层,所不同的是采用氧化性化学试剂的方法。目前钝化液主要采用的试剂是重铬酸钾,具体做法是将酸洗净化后的碳钢管放入钝化槽内,在一定温度下浸泡一定的时间,使管壁内生成一层致密的Fe3O4氧化膜。1.2.2工质内添加缓蚀剂在工质中添加缓蚀剂是为了使管壁表面产生更为均匀与密集的Fe3O4钝化层。缓蚀剂与化学钝化一般联合使用,由于制造工艺过程中不可避免会产生对局部钝化膜的破坏,这时缓蚀剂就可以起到修补的作用。缓蚀剂品种很多,一般采用阳极型缓蚀剂,其管壁缓蚀效果较好。具体做法是在工质内添加质量分数为1%~3%的重铬酸钾。1.2.3排放法和渗透法在热管冷凝端部装上排气阀,必要时打开阀将积累的氢气排放出去。也可在热管冷凝端部装上钯管,让产生的氢气随时渗透出去。1.2.4氧化除氢法根据化学理论,标准电极电位为正值的元素的氧化物都能被氢还原出来。常见的铜、镍、锌、钴等元素的氧化物都能与氢进行氧化还原反应,只是要求的反应温度不同,反应速度不一样。氧化除氢技术在20世纪90年代初就开始了推广应用,但要求的反应温度一般超过150℃,使其在工业中的应用受到一定限制。目前,一种新型高效复合配方的氧化除氢技术已研制成功并进行了工业应用,在常温下就可快速地进行除氢反应。这一技术的推广应用,必将极大地提高热管的使用寿命。针对化学钝化膜不稳定、排放法和渗透法不易操作、高温蒸汽钝化所需场地设备及投资较大的问题,我们认为最好的延长热管寿命的方法应为化学钝化、缓蚀剂及氧化除氢技术的配合使用。2热管积灰在热管余热回收设备中,热管积灰是普遍存在的问题,积灰增加了受热面热阻,降低了设备的传热能力,还可以减少流体的通道面积,增加流动阻力,降低换热表面温度,造成低温露点腐蚀。不少的余热回收设备由于积灰严重不能正常运行,甚至被迫停用,因此积灰已成为节能设备能否正常运行的一个主要问题。2.1形成机理积灰按温度可划分为高温区积灰、过渡区积灰和低温区积灰,热管换热设备的积灰主要是低温区积灰。低温区积灰一般为疏松式积灰,主要发生在下游温度较低的换热设备上。积灰形成的机理较复杂,一般认为疏松式积灰是由分子引力和静电引力的作用而形成。资料表明,当灰粒的当量直径小于3μm时,灰粒与金属管壁间、灰粒与灰粒间的万有引力超过灰粒本身的重量,烟气中所含的微小灰粒冲刷到管壁时,就吸附在金属表面或积灰表面上。另外,烟气流动时,因烟气中灰粒的电阻较大会发生静电感应,虽然受热面的材质是良导体,但当受热面积灰后,其表面就变成了绝缘体,很容易将因静电感应而产生的带异种电荷的灰粒(当量直径小于10μm)吸附在其表面上,形成疏松式积灰。疏松式积灰在以下条件下均可形成低温粘结性积灰:①燃料燃烧不充分而形成高粘度聚合物,此种聚合物极易吸附于管壁上,不容易脱落而形成粘结性积灰。②当灰垢吸收烟气中的SO3和水蒸气后转化成硫酸盐,形成粘结性积灰。2.2对策2.2.1热管管外翅片结构选择气相换热的热管换热器热管外都采用加肋强化传热,翅片形式多选用穿片或螺旋形缠绕片,这些翅片结构紧凑,肋化比高,效果明显,但缺点是极易积灰结垢。对于高粉尘流体,即使翅片间距取12~20mm,在某些情况下也会出现严重积灰。对于高含尘流体,目前趋向于选择以下2种结构。(1)轴对称单列纵向直肋翅片该翅片结构简单,制作方便,相对肋化比低,不易积灰。如果将翅片做成不等高,即降低背后翅片高度,可进一步减少积灰。目前此结构的热管换热器已投入工业应用效果较好。(2)钉头管钉头管作为换热设备的传热元件一般多用于粘结性积灰部位。例如,在燃油加热炉的对流室中,为了减少热管换热器的积灰堵塞,将钉头管制成的热管空气预热器用于以高含硫油为燃料的常减
本文标题:热管转轮,板换的比较
链接地址:https://www.777doc.com/doc-2217560 .html