您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 第10章含有耦合电感的电路
第10章含有耦合电感的电路重点:1.互感和互感电压的概念及同名端的含义;2.含有互感电路的计算;3.空心变压器和理想变压器的电路模型。难点:1.耦合电感的同名端及互感电压极性的确定;2.含有耦合电感的电路的方程;3.含有空心变压器和理想变压器的电路的分析。本章与其它章节的联系:本章的学习内容建立在前面各章理论的基础之上。预习知识:电磁感应定律§10.1互感耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。1.互感两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流i1时,不仅在线圈1中产生磁通f11,同时,有部分磁通f21穿过临近线圈2,同理,若在线圈2中通电流i2时,不仅在线圈2中产生磁通f22,图10.1同时,有部分磁通f12穿过线圈1,f12和f21称为互感磁通。定义互磁链:ψ12=N1φ12ψ21=N2φ21当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:互感磁通链:上式中M12和M21称为互感系数,单位为(H)。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:需要指出的是:1)M值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足M12=M21=M2)自感系数L总为正值,互感系数M值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。2.耦合因数工程上用耦合因数k来定量的描述两个耦合线圈的耦合紧密程度,定义一般有:当k=1称全耦合,没有漏磁,满足f11=f21,f22=f12。耦合因数k与线圈的结构、相互几何位置、空间磁介质有关。3.耦合电感上的电压、电流关系当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为:即线圈两端的电压均包含自感电压和互感电压。在正弦交流电路中,其相量形式的方程为注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。以上说明互感电压的正、负:(1)与电流的参考方向有关。(2)与线圈的相对位置和绕向有关。4.互感线圈的同名端由于产生互感电压的电流在另一线圈上,因此,要确定互感电压的符号,就必须知道两个线圈的绕向,这在电路分析中很不方便。为了解决这一问题引入同名端的概念。同名端—当两个电流分别从两个线圈的对应端子同时流入或流出时,若产生的磁通相互增强,则这两个对应端子称为两互感线圈的同名端,用小圆点或星号等符号标记。例如图10.2中线圈1和线圈2用小圆点标示的端子为同名端,当电流从这两端子同时流入或流出时,则互感起相助作用。同理,线圈1和线圈3用星号标示的端子为同名端。线圈2和线圈3用三角标示的端子为同名端。注意:上述图示说明当有多个线圈图10.2之间存在互感作用时,同名端必须两两线圈分别标定。根据同名端的定义可以得出确定同名端的方法为:(1)当两个线圈中电流同时流入或流出同名端时,两个电流产生的磁场将相互增强。(2)当随时间增大的时变电流从一线圈的一端流入时,将会引起另一线圈相应同名端的电位升高。两线圈同名端的实验测定:实验线路如图10.3所示,当开关S闭合时,线圈1中流入星号一端的电流i增加,在线圈2的星号一端产生互感电压的正极,则电压表正偏。图10.3有了同名端,以后表示两个线圈相互作用,就不再考虑实际绕向,而只画出同名端及电流和电压的参考方向即可,如图10.4所示。根据标定的同名端和电流、电压参考方向可知:图10.4(a)图10.4(b)(a)图(b)图例10-1,如图所示(a)、(b)、(c)、(d)四个互感线圈,已知同名端和各线圈上电压电流参考方向,试写出每一互感线圈上的电压电流关系。例10-1图(a)例10-1图(b)例10-1图(c)例10-1图(d)解:(a)(b)(c)(d)§10.2含有耦合电感电路的计算含有耦合电感(简称互感)电路的计算要注意:(1)在正弦稳态情况下,有互感的电路的计算仍可应用前面介绍的相量分析方法。(2)注意互感线圈上的电压除自感电压外,还应包含互感电压。(3)一般采用支路法和回路法计算。因为耦合电感支路的电压不仅与本支路电流有关,还与其他某些支路电流有关,若列结点电压方程会遇到困难,要另行处理。1.耦合电感的串联(1)顺向串联图10.5图10.5所示电路为耦合电感的串联电路,由于互感起“增助”作用,称为顺向串联。按图示电压、电流的参考方向,KVL方程为:根据上述方程可以给出图10.6所示的无互感等效电路。等效电路的参数为:图10.6(2)反向串联图10.7所示的耦合电感的串联电路,由于互感起“削弱”作用,称为反向串联。按图示电压、电流的参考方向,KVL方程为:图10.7根据上述方程也可以给出图10.6所示的无互感(去耦)等效电路。但等效电路的参数为:在正弦稳态激励下,应用相量分析,图10.5和图10.7的相量模型如图10.8所示。图10.8(a)图10.8(b)图(a)的KVL方程为:输入阻抗为:可以看出耦合电感顺向串联时,等效阻抗大于无互感时的阻抗。顺向串联时的相量图如图10.9所示。图(b)的KVL方程为:输入阻抗为:可以看出耦合电感反向串联时,等效阻抗小于无互感时的阻抗。反向串联时的相量图如图10.10所示。图10.9注意:(1)互感不大于两个自感的算术平均值,整个电路仍呈感性,即满足关系:(2)根据上述讨论可以给出测量互感系数的方法:把两线圈顺接一次,反接一次,则互感系数为:图10.102.耦合电感的并联(1)同侧并联图10.11为耦合电感的并联电路,由于同名端连接在同一个结点上,称为同侧串联。根据KVL得同侧并联电路的方程为:由于i=i1+i2解得u,i的关系:图10.11根据上述方程可以给出图10.12所示的无互感等效电路,其等效电感为:(2)异侧并联图10.12图10.13中由于耦合电感的异名端连接在同一个结点上,故称为异侧并联。此时电路的方程为:考虑到:i=i1+i2解得u,i的关系:图10.13根据上述方程也可以给出图10.12所示的无互感等效电路,其等效电感为:3.耦合电感的T型去耦等效如果耦合电感的2条支路各有一端与第三条支路形成一个仅含三条支路的共同结点如图10.14所示,称为耦合电感的T型联接。显然耦合电感的并联也属于T型联接。图10.14图10.15(1)同名端为共端的T型去耦等效图10.14的电路为同名端为共端的T型联接。根据所标电压、电流的参考方向得:由上述方程可得图10.15所示的无互感等效电路。(2)异名端为共端的T型去耦等效图10.16图10.17图10.16的电路为异名端为共端的T型联接。根据所标电压、电流的参考方向得:由上述方程可得图10.17所示的无互感等效电路。注意:T型去耦等效电路中3条支路的等效电感分别为:支路3:(同侧取“+”,异侧取“—”)支路1:支路2:例10-2,求图(a)、(b)所示电路的等效电感。例10-2图(a)例10-2图(b)解:(a)图中4H和6H电感为T型结构,应用T型去耦等效得图(c)电路。则等效电感为:例10-2图(c)例10-2图(d)(b)图中5H和6H电感为同侧相接的T型结构,2H和3H电感为异侧相接的T型结构,应用T型去耦等效得图(d)电路。则等效电感为:例10-3,图(a)为有耦合电感的电路,试列写电路的回路电流方程。例10-3(a)例10-3(b)解:设网孔电流如图(b)所示,为顺时针方向,则回路方程为:注意:列写有互感电路的回路电流方程是,注意互感电压的极性和不要遗漏互感电压。§10.3空心变压器变压器由两个具有互感的线圈构成,一个线圈接向电源,另一线圈接向负载。变压器是通过互感来实现从一个电路向另一个电路传输能量或信号的器件。当变压器线圈的芯子为非铁磁材料时,称空心变压器。1.空心变压器电路图10.18为空心变压器的电路模型,与电源相接的回路称为原边回路(或初级回路),与负载相接的回路称为副边回路(或次级回路)。图10.182.分析方法(1)方程法分析在正弦稳态情况下,图10.18电路的回路方程为:令称为原边回路阻抗,称为副边回路阻抗。则上述方程简写为:从上列方程可求得原边和副边电流:(2)等效电路法分析等效电路法实质上是在方程分析法的基础上找出求解的某些规律,归纳总结成公式,得出等效电路,再加以求解的方法。首先讨论图10.18的原边等效电路。令上述原边电流的分母为:则原边电流为:根据上式可以画出原边等效电路如图10.19所示。上式中的Zf称为引入阻抗(或反映阻抗),是副边回路阻抗通过互感反映到原边的等效阻抗,它体现了副边回路的存在对原边回路电流的影响。从物理意义讲,虽然原、副边没有电的联系,但由于互感作用使闭合的副边产生电流,反过来这个电流又影响原边电流电压。把引入阻抗Zf展开得:图10.19上式表明:(1)引入电阻不仅与次级回路的电阻有关,而且与次级回路的电抗及互感有关。(2)引入电抗的负号反映了引入电抗与付边电抗的性质相反。可以证明引入电阻消耗的功率等于副边回路吸收的功率。根据副边回路方程得:方程两边取模值的平方:从中得:应用同样的方法分析方程法得出的副边电流表达式。令则根据上式可以画出副边等效电路如图10.20所示。上式中的Z2f称为原边回路对副边回路的引入阻抗,它与Z1f有相同的性质。应用戴维宁定理也可以求得空心变压器副边的等效电路。(3)去耦等效法分析对空心变压器电路进行T型去耦等效,变为无互感的电路,再进行分析。,图10.20例10-4,图(a)为空心变压器电路,已知电源电压US=20V,原边引入阻抗Zl=10–j10Ω,求:负载阻抗ZX并求负载获得的有功功率。例10-4图(a)解:图(a)的原边等效电路如图(b)所示,引入阻抗为:从中解得:例10-4图(b)此时负载获得的功率等于引入电阻消耗的功率,因此:注意:电路实际处于最佳匹配状态,即§10.4理想变压器理想变压器是实际变压器的理想化模型,是对互感元件的理想科学抽象,是极限情况下的耦合电感。1.理想变压器的三个理想化条件条件1:无损耗,认为绕线圈的导线无电阻,做芯子的铁磁材料的磁导率无限大。条件2:全耦合,即耦合系数条件3:参数无限大,即自感系数和互感系数但满足:上式中N1和N2分别为变压器原、副边线圈匝数,n为匝数比。以上三个条件在工程实际中不可能满足,但在一些实际工程概算中,在误差允许的范围内,把实际变压器当理想变压器对待,可使计算过程简化。2.理想变压器的主要性能满足上述三个理想条件的理想变压器与有互感的线圈有着质的区别。具有以下特殊性能。(1)变压关系图10.21为满足三个理想条件的耦合线圈。由于,所以因此图10.21根据上式得理想变压器模型如图10.22所示。注意:理想变压器的变压关系与两线圈中电流参考方向的假设无关,但与电压极性的设置有关,若u1、u2的参考方向的“+”极性端一个设在同名端,一个设在异名端,如图10.23所示,此时u1与u2之比为:(2)变流关系根据互感线圈的电压、电流关系(电流参考方向设为从同名端同时流入或同时流出):则代入理想化条件:,得理想变压器的电流关系为:图10.22图10.23图10.24注意:理想变压器的变流关系与两线圈上电压参考方向的假设无关,但与电流参考方向的设置有关,若i1、i2的参考方向一个是从同名端流入,一个是从同名端流出,如图10.24所示,此时i1与i2之比为:(3)变阻抗关系设理想变压器次级接阻抗Z,如图10.25所示。由理想变压器的变压、变流关系得初级端的输入阻抗为:图10.25由此得理想变压器的初级等效电路如图10.26所示,把Zin称为次级对初级的折合等效阻抗。注意:理想变压器的阻抗变换性质只改变阻抗的大小,不改变阻抗的性质。(4)功率性质由理想变压器的变压、变流关系得初级端口与次级端口吸收的功率和为:图10.26以
本文标题:第10章含有耦合电感的电路
链接地址:https://www.777doc.com/doc-2241619 .html