您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 期末复习一反比例函数题选
期末复习一反比例函数题选一、选择、填空题1、在同一平面直角坐标系中,函数1yx与函数1yx的图象可能是()2、正比例函数y=kx和反比例函数21kyx(k是常数,且k≠0)在同一平面直角坐标系中的图象可能是()3、函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C、D.4、设点11,yxA和22,yxB是反比例函数xky图象上的两个点,当1x<2x<0时,1y<2y,则一次函数kxy2的图象不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限5、若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2B.m<0C.m>﹣2D.m>06、设有反比例函数y=,(x1,y1),(x2,y2)为其图象上两点,若x1<0<x2,y1>y2,则k的取值范围.7、已知A(-1,y1),B(2,y2)两点在双曲线y=xm23上,且y1y2,则m的取值范围是()A.m0B.m0C.m23D.m238、反比例函数y=mx的图象如图3所示,以下结论:①常数m<-1;②在每个象限内,y随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(-x,-y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④9、已知一个函数的图象与y=6x的图象关于y轴成轴对称,则该函数的解析式为.10、如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是()A.(﹣3,4)B.(﹣4,﹣3)C.(﹣3,﹣4)D.(4,3)11、如果一个正比例函数的图象与一个反比例函数xy6的图象交),(),,(2211yxByxA,那么))((1212yyxx值为.12、直线y=x+a-2与双曲线y=x4交于A,B两点,则当线段AB的长度取最小值时,a的值为().A.0B.1C.2D.513、已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为x轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB=.(13题图)(14题图)(15题图)(16题图)14、如图,反比例函数xky的图象经过点P,则k=.yxOACB15、如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是.16、.已知双曲线xy3和xky的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点BA、.若CB=CA2,则k=.17、下列图形中,阴影部分面积最大的是()A.B.C.D.18、在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=.19、如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度=.20、已知双曲线0kykx经过直角三角形△OAB斜边OA的中点D,且与直角边AB相交于点C,若点A的坐标为(—6,4),则△AOC的面积为()A、12B、9C、6D、4(20题图)(21题图)(22题图)21、如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1B.2C.3D.422、如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上则a的值是()A.1B.2C.3D.4xy0DCBA23、如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.(23题图)(24题图)24、如图,直线43yx与双曲线kyx(0x)交于点A.将直线43yx向右平移92个单位后,与双曲线kyx(0x)交于点B,与x轴交于点C,若2AOBC,则23、如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数)0(xxky的图象上,则k的值等于.25.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数)0(xxky的图象上,则k的值等于.26、如图,点P是反比例函数)0(kxky图象上的点,PA垂直x轴于点A(-1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=5(1)k的值是__________;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA∠ABC,则a的取值范围是__________二、解答题27、已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3x-1时,求y的取值范围.(4)当y≥-2时,求x的取值范围。OxyABCyxDCBAO(25题图)28、阅读材料:若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立.证明:∵()2≥0,∴a﹣+b≥0.∴a+b≥.当且仅当a=b时,“=”成立.举例应用:已知x>0,求函数y=2x+的最小值.解:y=2x+≥=4.当且仅当2x=,即x=1时,“=”成立.当x=1时,函数取得最小值,y最小=4.问题解决:汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).29、已知反比例函数y=(k≠0)和一次函数y=x﹣6.(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值.(2)当k满足什么条件时,两函数的图象没有交点?30、如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的面积;(3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.31、如图,函数y1=﹣x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.(1)求函数y2的表达式;(2)观察图象,比较当x>0时,y1与y2的大小.32、已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得baxxk0成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.(4)若点P是反比例函数图象上的一点,△ABP的面积恰好等于△ABC的面积,求P点的坐标33、如图,矩形OABC的顶点,AC分别在x轴和y轴上,点B的坐标为(2,3)。双曲线(0)kyxx的图像经过BC的中点D,且与AB交于点E,连接DE。(1)求k的值及点E的坐标;(2)若点F是CD边上一点,且FBCDEB,求直线FB的解析式34、如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).(1)求反比例函数的关系式;(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.35、(1)已知m是方程x2﹣x﹣2=0的一个实数根,求代数式的值.(2)如图,在平面直角坐标系xOy中,一次函数y=﹣x的图象与反比例函数的图象交于A、B两点.①根据图象求k的值;②点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试写出点P所有可能的坐标.36、如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.37、如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数kyx(x>0,k≠0)的图像经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。38、如图,已知直线l分别与x轴、y轴交于A,B两点,与双曲线y=(a≠0,x>0)分别交于D、E两点.(1)若点D的坐标为(4,1),点E的坐标为(1,4):①分别求出直线l与双曲线的解析式;②若将直线l向下平移m(m>0)个单位,当m为何值时,直线l与双曲线有且只有一个交点?(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值.39、如图①,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,sin∠AOB=,反比例函数y=(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)若OA=10,求反比例函数解析式;(2)若点F为BC的中点,且△AOF的面积S=12,求OA的长和点C的坐标;(3)在(2)中的条件下,过点F作EF∥OB,交OA于点E(如图②),点P为直线EF上的一个动点,连接PA,PO.是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
本文标题:期末复习一反比例函数题选
链接地址:https://www.777doc.com/doc-2263195 .html