您好,欢迎访问三七文档
1第三章复变函数的级数习题1.3.11.证明一致收敛级数的判别法一:已知正项级数0kkm∞=∑收敛,若在闭区域D上(线曲线上l)的所有点均有(),kkzmω≤则0()kkzω∞=∑在D上(线上l)绝对且一致收敛。证:由0kkm∞=∑收敛,即任给0ε,可找到N,当nN时,11npnpkkknknmmε++=+=+=∑∑,又由(),kkzmω≤,故任给0ε,当nN时,对任意的p及D上(线l上)的z,均有:111()()npnpnpkkkknknknzzmωωε+++=+=+=+≤≤∑∑∑故0()kkzω∞=∑在D上(线上l)绝对且一致收敛。2.试证明级数1sin()(1)kkzkk∞=+∑在复平面内一致收敛。证:令1,(1)kmkk=+其级数为1,1kkm∞=∑收敛的正项级数;11111()(1)1kkkkkk∞∞===−++∑∑21111111lim[(1)()()()1223341nnn→∞=−+−+−+⋅⋅⋅⋅−+⋅⋅⋅⋅=+由sin1()(1)(1)kkkzzmkkkkω=≤=++由判别1得证。习题1.3.21.求下列幂极数的收敛半径。(1)1kpkzk∞=∑(p为正整数)解:111(1)limlimlim(1)11ppkkkkkpakRakk−−→∞→∞→∞−===−=(2)202kkkz∞=∑解:22(1)21112limlimlim212kkkkkkkkaRa−−−→∞→∞→∞====∞(3)21(!)kkkkzk∞=∑3解:2211(!)limlim[(1)!](1)kkkkkkkakRkak→∞→∞++==++111lim(1)lim011kkkekkk→∞→∞=+==++(4)20(3)kkz∞=∑方法一:22222111limlim33kkkkkkRa→∞→∞===方法二:2220001(3)[(3)(3)]2kkkkkkzzz∞∞∞====+−∑∑∑11123111limlim,,3333nknnnkaRRRa−−→∞→∞====∴=方法三:令2(3)zω=,收敛半径2(3)zRRω=200(3)kkkkzω∞∞===∑∑,ω收敛。级数在ω平面收敛半径1Rω=级数在z平面收敛半径1133zRRω==(5)21(1)kkkkze∞=−∑4解:21212(1)1limlimlim(1)kkkkkkkkaeReekake−−→∞→∞→∞−===−=1ze−(6)10(1)(3)kkkz∞+=+−∑解:1limlim1,311kkkkakRzak−→∞→∞===−+2.证明:将幂级数逐项积分与逐项微分,其收敛半径不变。证:设幂级数为:0()kkksazb∞==−∑其1limkkkaRa−→∞=逐项积分后,10()1kkkaszbck∞+==−++∑积其1lim1kkkakRRak−→∞==+积逐项微分后,10()kkksakzb∞−==−∑微其1(1)limkkkakRRak−→∞−==微53.证明一致收敛级数的性质二:若0()kkzω∞=∑在l一致收敛于()sz,且各项()kzω在l连续,则级数可沿l上逐项积分:0()()kllkszdzzdzω∞==∑∫∫证:(1)思路:由极限定义,任给0ε′,看是否存在N,当nN时,0()()nkllkszdzzdzωε=′−∑∫∫,若存在。则0lim()()nkllnkzdzSzdzω→∞==∑∫∫。结论得证。(2)由一致收敛的充要条件可知,任给0lεε′=,存在N,当nN时0()()nkllkszdzzdzωε=−∑∫∫(3)由积分性质:00()()[()()]nnkklllkkszdzzdzszzdzωω==−=−∑∑∫∫∫0()()nkllkszzdzdzlωεε=≤−=∑∫∫(4)由极限的定义,当nN时有:0()()nkllkszdzzdzlωεε=′−=∑∫∫则0lim()()nkllnkzdzszdzω→∞==∑∫∫6习题1.3.3将()fz展成泰勒级数,并指出级数的收敛范围。1.()zfze=,展开中心为0z=。解:()(0)1!!kkfakk==00()!kkkkkzfzazk∞∞==∴==∑∑z∞2.()sinfzz=及cosz,展开中心是0z=解:(1)()sinfzz=方法一:011()()sin()[]22!!kkizizkizizzeeiikk∞−=−=−=−∑2121001(2)2(1)2(21)!(21)!nnnnnizinn++∞∞====−++∑∑方法二:()(0)!kkfak=(0)0,(0)cos01,(0)sin00,cos01ffff′′′′′′′====−==−=−(4)(0)sin00,f==⋅⋅⋅⋅⋅221(1)0,(21)!nnnaan+−∴==+代入0(),kkkfzaz∞==∑与上同。(2)()cosfzz=011()()cos()[]22!!kkizizkizizzeekk∞−=−=+=+∑720(1)(2)!nnkzn∞==−∑也可由()(0)!kkfak=按(1)算出ka3.21()1fzz=−,展开中心为0z=解:方法一:2200()(),kkkkfzzz∞∞====∑∑21z即1z方法二:1111()()(1)(1)211fzzzzz==+−+−+20001((1))2kknkkkzzz∞∞∞====+−=∑∑∑(1)z4.1()1zfzz−=+,展开中心分别为0z=及1z=。解:(1)0z=邻域①012112(1),11kkkzzzz∞=−=−=−−++∑(1)z②011(1)(1)(1),11kkkzzzzzz∞=−=−=−−++∑10(1)()kkkkzz∞+==−−∑(1)z③212(),,1(1)zzz−′=⋅⋅⋅⋅++81()10011(1)!()22(1)!1(1)kkkzzkzkkzz−−==+−−==−++()101111()12(1)1!10kkkkkkzzzzzkzz∞∞−==−−==−+−++=∑∑(2)在1z=邻域。011112(1)(1)()11221[()]2kkkzzzzzz∞=−−−=−=−−+−−∑101(1)(),2kkkz∞+=−=−∑11,2z−即12z−5.11()zfze−=,展开中心为零。解:方法一,直接按指数函数展开计算1111001()()(1)!1!zkkkzzkkzzfzeeeezkzk∞∞+−−−======−−∑∑230(1)(1)(2)[1]!2!3!kkzkkkkkekzzzk∞=+++=++++⋅⋅⋅∑23223266241(1)(12)1!2!3!2!2!3!zzzzzzezz⎧=+++++⋅⋅⋅+++++⋅⋅⋅⎨⎩32312(13)(14)3!2!4!zzzzz⎫++++⋅⋅⋅++⋅⋅⋅+⋅⋅⋅⎬⎭23431373(1)2!3!4!zzzez=++++⋅⋅⋅注意(1)kz−−的展开式与(1)mz+(其中0m)的展开式形式相同9实际上,设()(1)kzzϕ−=−展开可证,刻意对()z−求导方法二:求泰勒级数(0)fe=1210(0)(1)zzfeze−−=′=−=11223110(0)[(1)(1)2(1)]3zzzfezzeze−−−−−=′′=−−+−=1655410(0)[(1)4(1)2(1)6(1)]13zzfezzzze−−−−−=′′′=−+−+−+−=………………………..代入()0(0)!kkkfzk∞=∑结果相同()fz最靠近0z=的奇点是1z=故1z方法三:取0(),kkkfzaz∞==∑令0z=得1100(0)zzafee−====由111101()()1zzzeez−−=′′=−得000()()kklkkkklazazz∞∞∞===′′=∑∑∑即11100kklkkkklakzazlz∞∞∞−−====∑∑∑232312340123234()(123)aazazazaazazazzz∴+++=++++⋅⋅⋅+++⋅⋅⋅10列表相乘得01210321043210223234234aaaaaaaaaaaaaa=⎧⎪=+⎪⎨=++⎪⎪=+++⎩解得1021032104321013(2)22!113(23)33!123(234)44!aaeaaaeaaaaeaaaaae==⎧⎪⎪=+=⎪⎪⎨=++=⎪⎪⎪=+++=⎪⎩6.()2zfzz=+,展开中心为1。解:0221()11()133313kkzzfzz∞=−=−=−−−+∑7.1()sin1fzz=−,展开中心为0z=,只要求前四项。解:01(sin)11zz==−2111(sin)(cos)()111zzz′=−−−4311112(sin)(sin)()()1111(1)coszzzzz′′=−+−−−−−6511114(sin)()()(sin)1111(1)coszzzzz′′′=−−−−−−−11561216(sin)()1(1)1(1)coszzzz−+−−−−231sin12cos15cos16sin1sinsin1(cos1)12!3!zzzz−+−=++++⋅⋅⋅−8.试证明2101ln2121kkzzzk+∞=+=−+∑,(1)z证:设1()ln1zfzz+=−方法一:利用0()()(0)()zftdtfzffz′=−=∫因10(0)lnln101fz+===−由222011(1)(1)(1)2(ln)211(1)11kkttttttttt∞=+−−−+′=−==+−−−−∑两边积分,2120000()()22021kzzkkkztfzftdttdtk+∞∞==′===+∑∑∫∫210221kkzk+∞==+∑方法二:求泰勒勒函数01(0)lnln101zzfz=+===−022(0)21zfz=′==−220(0)4(1)0zfzz−=′′=−=23220(0)[8(1)(2)4(1)22!zfzzzz−−=′′′=−−−+−=⋅(4)22423230(0)[48(1)(2)162(1)4(2)(1)(2)zfzzzzzzz−−−==−−−+⋅−+−−−12(5)325224(0)[384(1)(2)288(1)fzzzzz−−=−−−+−24232396(1)(2)32(1)32(1)zzzzz−−−−−−+−+−223016(1)(3)(2)16(1)]4824!zzzzz−=−−−−+−==⋅35112!4!()ln2(000)11!3!5!zfzzzzz+==++++++⋅⋅⋅−35212102()21352121kkkzzzzzkk++∞==+++⋅⋅⋅++⋅⋅⋅=++∑习题1.3.41.以0z=为中心,将1()()zazb−−展成罗朗级数,其中,ab为复数,且0ba。解:函的奇点在,.zazb==(1)zab区为泰勒级数。1111()()()()fzzbzabaazbz==−−−−−−11111[]11zzbaabab=−−−−11001[]kkkkkkzzbaab∞∞++===−−∑∑110111()kkkkzbaab∞++==−−∑,zab(2)azb区1111()()()()fzzazbabzabz=−=+−−−−−1311001()kkkkkkazabzb∞∞++===+−∑∑,azb(3)abz区1111()()()()fzzazbabzazb==−−−−−−11100011()kkkkkkkkkkabababzzabz∞∞∞+++===−=−=−−∑∑∑2.以0z=为中心得21(1)(2)zz+−展成罗朗级数解:21(1)(2)2ABCzzziziz=+++−+−−21()(2)()(2)(1)AzizBzizCz∴=−−+−−++令zi=得:11212(2),2410iBiiBi−+=⋅−==−−令zi=−得:1121()(2),2410iAiiiAi−−=−−−−==−+令2z=得:11(41),5CC=+=2112121()(2)(2)10()10()5(2)iifzzzziziz−+−−==+++−−+−当1z时可展成泰勒
本文标题:复变函数的级数
链接地址:https://www.777doc.com/doc-2273618 .html