您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 统计图表 > 水泥基材表面与界面分析概述
1水泥基材料表面与界面分析概述Summaryofcement-basedmaterials’surfaceandinterfaceanalyses姓名:卞周宏学号:2014111113000986任课老师:屈君娥课程:材料表面与界面摘要随着混凝土材料的不断发展,高性能已成为混凝土材料的主要发展趋势。高性能混凝土(HPC)作为具有高性能的新型水泥基复合材料,在工程实践中得到了越来越广泛的应用。本文通过SEM、TEM、XPS、AES、SIMS等现代分析方法,对水泥基材料的表面与界面特性有了一定的研究,研究了其对混凝土的强度和耐久性的影响,分析出了材料表面与界面机理。关键词:高性能混凝土表面效应火山灰活性ABSTRACTSWiththecontinuousdevelopmentofconcretematerials,highperformancehavebecomethemaintrendsofdevelopmentofconcretematerials.Highperformanceconcrete(HPC)asanewtypeofcement-basedcompositematerialswithhigh-performances,hasbeenmoreandmorewidelyusedinengineeringpractice.ThispaperstudiedthesurfaceandinterfacepropertiesofCementbasematerialsthroughSEM,TEM,XPS,AES,SIMSmodernanalysismethods,theinfluenceonthestrengthanddurabilityofconcreteandanalyzedthemechanismofthesurfaceandinterfacepropertiesinconcrete.KEYWORDS:Highperformanceconcrete(HPC)SurfaceeffectVolcanicactivity21水泥基材料的发展现状及趋势1.1发展现状随着建筑业、海洋业和交通业等的飞速发展,超高、超长、超强和在各种严酷条件下使用的建筑物的出现,对水泥与混凝土材料提出了更高的要求。高强度、长寿命、低环境负荷、功能化是当代水泥基材料发展的主要方向。传统混凝土在强度、抗压等方面的不足,引出了社会对先进水泥基材料的迫切需求。先进水泥基材料就是应用复合材料新理论(如:有机-无机多相互穿网络结构模型、界面增强机理、延迟膨胀理论等),构建一个汽、液、固多相共存,有机和无机复合的复杂系统,让产品具有更好的性质。先进水泥基材料把传统的水泥与混凝土材料推向高新技术领域,研究和开发的部分成果已进入应用阶段,取得了巨大的经济、社会效益。1.1.1混凝土性能裂化过程和寿命预测的研究水泥基材料的应用范围在不断扩大,高温或局部高温时水泥基材料的性能与常温下有很大的不同,但在此方面的研究很少,中国建筑材料科学研究总院针对目前水泥基材料热变形性能研究方法不足,结论不系统的现状,首次系统研究了硬化水泥基材料高温热膨胀性能及其影响因素,取得了很大的进展。1.1.2大流动性混凝土的制备化学外加剂的出现开启了混凝土由干硬性向塑性再向流动性的发展之路。混凝土化学外加剂已经成为配制优质混凝土必不可少的原材料,它改善了新拌混凝土的工作性能和硬化混凝土的强度等性能。特别是合成减水剂技术不断发展,由原来的萘系发展到新一代的聚羧酸系高性能减水剂,减水率大幅度提高,还具有良好的坍落度保持性能和一定的引气性,满足了自流平混凝土的需要。在一些钢筋特别致密,不便插捣的结构构件,或者大面积的车间、厂房施工时,自流平混凝土技术都是最好的选择。1.1.3改善水泥基材料体积稳定性的研究进展高性能混凝土配制时通常都使用较高的胶凝材料总量,并且掺加有大量磨细矿物掺合料,这些措施引起了较大的混凝土自收缩,混凝土的开裂趋势增加。近年来,高性能混凝土研究的重点之一就是早期收缩的机理、测量方法和设备、影响因素和改善措施等,并取得了突出进展。大连理工大学和中国建筑材料科学研究总院共同完成的国家自然科学基金重点项目�混凝土结构裂缝的形成与发3展机理及控制技术研究是近年来针对混凝土早期收缩开裂问题开展系统研究的项目之一,该项目从材料和结构两个不同角度深入研究了影响混凝土早期收缩开裂的因素。研究工作有重要的学术意义和普遍的工程应用价值。1.1.4高延性水泥基复合材料的研究进展复合化是水泥基复合材料高性能化的主要途径,纤维增强是核心。高的纤维掺量并辅以特殊的制备工艺,如渍浆纤维混凝土(SIFCON,SlurryInfiltratedFiberConcrete),使其抗压、抗拉、抗弯、抗剪与抗冲击强度及韧性等性能大幅度提高。同时,低掺量的短纤维按三维的方式乱向均匀分布于水泥基材料中使其综合性能优异,如:施工简便,减少塑性收缩开裂、延缓裂缝扩展,提高水泥基材料裂后的承载力和韧性等,所以,近些年得到了世界各国的广泛的重视。其中,高延性纤维增强水泥基复合材料(EngineeredCementitiousComposite,ECC)是近几年最为活跃的一种,2006年在�Architectur�alRecordsintheConcreteandMasonryCategory被评为面向建筑师、设计师和管理者五个最有新意和发展潜力的建筑产品之一。1.2发展趋势1.2.1超复合化混凝土是以水泥石为基相、骨料作为分散相的分散复合结构,以其抗压强度高、耐火性好、使用灵活、施工方便等优点一直沿用至今。然而水泥的矿物组成从根本上决定了其低韧性和低抗拉强度的弱点。只有从改变混凝土的组成入手才能解决混凝土高韧低脆的缺陷,其中包括微细观复合化和宏观复合化。1.2.2高强、高性能化混凝土高强化的意义在于减轻建筑物的自重[5],目前我国大中城市中,预拌混凝土工厂已经比较成熟的掌握了C50-C60混凝土配制与泵送技术,现正在逐步得以提高,而C50-C60混凝土在大面积推广。在高强混凝土的研究中应致力于提高混凝土的延性、抗裂性与抗拉强度。高性能混凝土的实现途径在于完善其组成材料和工艺过程,在组成材料方面,通常使用高效减水剂和超细矿物掺合料(包括超细微粉、细磨矿渣和粉煤灰等),超细矿物细掺料,特别是纳米材料的加入能够明显改善水泥石的孔结构和密实程度,提高混凝土的耐久性;在配合比方面又用低水胶比,最大可能的消除因水分散失带来的不利影响;在制备工艺上采用完善的质量管理体系,消除在施工过程引起的缺陷。HPC不仅具有性能上的优势,而且在组成材料中大量利用工业废4渣,显著减少水泥用量,因此从可持续发展的角度而言,高性能混凝土本身就是绿色混凝土。1.2.3高功能、高智能化到目前为止,所使用的混凝土绝大多数都是只有单一功能的,这使得混凝土在某些特殊位置的使用上受到了极大的限制。早在1994年日本东京工业大学的长泷重义教授就提出了“土木工程混凝土材料的高性能化、高功能化”。在国际上高性能混凝土(HighPerformanceConcrete)不断发展的同时,高功能混凝土(HighFunctionConcrete)已经崭露头角,并且展示出极大的生命力。与此同时,随着现代电子信息技术和材料科学的发展,混凝土的智能化也成为混凝土发展的努力方向。智能混凝土是在混凝土原有组分的基础上复合智能型组分,使混凝土具有自感知和记忆、自适应、自修复的特性的多功能材料。它在对重大土木基础设施的应变的实量监测、损伤的无损评估、及时修复以及减轻台风、地震的冲击等诸多方面有很大的潜力,对确保建筑物的安全和长期的耐久性都极具重要性。因此混凝土的功能单一问题必须在不断的实践中得到解决。诚然,人类文明还将对混凝土不断提出新的功能要求,这些均需我们去发现、去研究、去完成。只有使混凝土不断具有新的复合功能,才能跟上人类文明发展的步伐,才能永葆青春。混凝土功能、智能一体化的进程必须加速。2水泥基材料常用的界表面测试方法2.1SEM表征2.1.1概述扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对X射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。2.1.2基本原理5扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。扫描电子显微镜正是根据上述不同信息产生的机理,采用不同的信息检测器,使选择检测得以实现。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对x射线的采集,可得到物质化学成分的信息。正因如此,根据不同需求,可制造出功能配置不同的扫描电子显微镜。2.1.3分析方法(1)显微结构的分析在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。(2)纳米尺寸的研究纳米材料是纳米科学技术最基本的组成部分,现在可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。(3)铁电畴的观测压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。62.2TEM表征2.2.1概述透射电子显微镜(Transmissionelectronmicroscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2微米、光学显微镜下无法看清的结构,又称“亚显微结构”。2.2.2基本原理吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。衍射
本文标题:水泥基材表面与界面分析概述
链接地址:https://www.777doc.com/doc-2278219 .html