您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 湖北省黄冈中学2013-2014学年高二数学上学期期末考试试题理新人教A版
-1-湖北省黄冈中学2013年秋季高二数学(理)期末考试试题第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列结论不正确...的是()A.若ln3y,则0yB.若1yx,则12yxC.若yx,则12yxD.若3yx,则3y2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110计算得22110(40302020)7.860506050K参照附表一(见Ⅰ卷后),得到的正确..结论是()A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别无关”D.有99%以上的把握认为“爱好该项运动与性别有关”3.若曲线()yfx在点(5,(5))Pf处的切线方程是8yx,则(5)(5)ff=()A.5B.4C.3D.24.设~(100.8)XB,,则2+1DX()等于()A.1.6B.3.2C.6.4D.12.85.两变量y与x的回归直线方程为23yx,若17101iix,则101iiy的值为()A.3B.4C.4.0D.40-2-6.右图实线是函数()(02)yfxxa≤≤的图象,它关于点),(aaA对称.如果它是一条总体密度曲线,则正数a的值为()A.22B.1C.2D.27.ABCD为长方形,2AB,1BC,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.4B.14C.8D.188.如图为函数32()fxaxbxcxd的图象,()fx为函数()fx的导函数,则不等式()0xfx的解集为()A.(,3)B.(0,3)C.(3,)D.(,3)(0,3)9.已知函数2()3fxxax在(0,1)上为减函数,函数2()lngxxax在(1,2)上为增函数,则a的值等于()A.1B.2C.2D.310.已知()fx为R上的可导函数,且对xR,均有()()fxfx,则有()A.20142014(2014)(0),(2014)(0)efffefB.20142014(2014)(0),(2014)(0)efffefC.20142014(2014)(0),(2014)(0)efffefD.20142014(2014)(0),(2014)(0)efffef附表一:2()PKk0.0500.0100.001k3.8416.63510.828oyx-33-3-第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知随机变量X服从正态分布2(1,),(2)0.72NPx,则(0)Px.12.从4名女生和2名男生中选出3名组成课外学习小组,如果按性别比例分层抽样,则组成此课外学习小组的概率是.13.若曲线2()lnfxaxx存在垂直于y轴的切线,则实数a的取值范围是.14.现有10元、20元、50元人民币各一张,100元人民币两张,从中至少取一张,共可组成不同的币值种数是.15.设)(''xf是函数)(xfy的导函数)('xf的导数,定义:若32()(0)fxaxbxcxda,且方程0)(''xf有实数解0x,则称点)(,00xfx为函数)(xfy的对称中心.有同学发现“任何一个三次函数都有对称中心”,请你运用这一发现处理下列问题:设32115()33212gxxxx,则(1)函数()gx的对称中心为;(2)1232014()()()()2015201520152015gggg.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)如图,已知直线1:10lxy以及1l上一点(23)P,,直线2:40lxy,求圆心在2l上且与直线1l相切于点P的圆的方程.-4-17.(本小题满分12分)已知函数daxbxxxf23)(的图象过点(0,2)P,且在点(1,(1))Mf处的切线方程为076yx.(1)求函数)(xfy的解析式;(2)求函数)(xfy的单调区间.18.(本小题满分12分)一组数据4、7、10、6、9,n是这组数据的中位数,设21()nfxxx.(1)求xf的展开式中1x的项的系数;(2)求xf的展开式中系数最大的项和系数最小的项.19.(本题满分12分)黄冈中学学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回.(1)设第一次训练时取到的新球个数为,求的分布列和数学期望;(2)在第一次训练时至少取到一个新球的条件下,求第二次训练时恰好取到一个新球的概率.20.(本小题满分13分)在淘宝网上,某店铺专卖黄冈某种特产.由以往的经验表明,不考虑其他因素,该特产每日的销售量y(单位:千克)与销售价格x(单位:元/千克,51x)满足:当31x时,1)3(2xbxay,为常数)(ba,;当53x时,70490yx.已知当销售价格为2元/千克时,每日可售出该特产700千克;当销售价格为3元/千克时,每日可售出150千克.(1)求ba,的值,并确定y关于x的函数解析式;(2)若该特产的销售成本为1元/千克,试确定销售价格x的值,使店铺每日销售该特产-5-所获利润)(xf最大(x精确到0.01元/千克).21.(本小题满分14分)已知函数211()ln()22fxaxxax(a为常数,0a).(1)若12x是函数()fx的一个极值点,求a的值;(2)当02a时,判断()fx在1[,)2上的单调性;(3)若对任意..的(1,2)a,总存在..01[,1]2x,使不等式20()(1)fxma成立,求实数m的取值范围.期末考试数学参考答案(理科)1、答案:B解析:若1yx,则'3312yx,选B2、答案:D解析:由27.86.635K,而2(6.635)0.010PK,故由独立性检验的意义可知选D.3、答案:D解析(5)3,(5)1,(5)(5)2ffff4、答案:C解析:(2x1)4D(x)4100.8(10.8)6.4D,选C;5、答案:B解析:10111.7,21.730.410iixxy,101104iiyy6、答案:A解析:曲线与x轴围成的面积为1,aaa,12221227、答案:B解析::长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为2,因此取到的点到O的距离小于1的概率为2,取到的点到O的距离大于1的概率为148、答案:D解析:当x(,3)时,()0fx,则0x,故(,3)是解集的一部分;同理(0,3)也是解集的一部分.故选D.9、答案:C解析:()fx在(0,1)上单减,则1,2,2aa()gx在(1,2)上单增,则-6-()20agxxx在(1,2)上恒成立,即22ax恒成立,故2.a,故2a.10、答案:C解析:构造函数()()xfxFxe,求导得2()()()()()0()xxxxfxefxefxfxFxee,故函数()Fx是定义在R上的减函数,故(2014)(0)(2014)FFF,即201402014(2014)(0)(2014)fffeee,即20142014(2014)(0),(2014)(0)efffef11、答案:0.28解析:(0)=Px(2)=1(2)0.28PxPx12、答案:35解析:抽样比为3162,故应抽取女生2人,男生1人,所以组成此课外学习小组的概率是214236CCC3513、答案:-(,0)解析:120axx有正实数解,即2210ax有正实数解,0a14、答案:23解析:除100元人民币以外每张均有取和不取2种情况,100元人民币的取法有3种情况,再减去全不取的1种情况,所以共有323123种.15、答案:1(,1)2;2014解析:32115()33212fxxxx,则又2()3fxxx,()21fxx.令()0fx得12x.故函数()fx的对称中心为1(,1)2.设00(,)Pxy在()fx上可知P关于对称点1(,1)2的对称点00(1,2)Pxy也在函数()fx上,∴00(1)2fxy.∴0000()(1)(2)2fxfxyy.∵122014()()()201520152015fff1201420072008()()()()2015201520152015ffff210072014.16、解:设圆心为(,)Cab,半径为r,依题意,4ba.设直线2l的斜率21k,过,PC两点的直线斜率PCk,因2PCl,故21PCkk,∴3(4)12PCaka,解得1,4ab.||2rPC.所求圆的方程为22(1)(4)2xy.17、解:(1)由)(xf的图象经过P(0,2),知d=2,所以,2)(23cxbxxxf-7-.23)(2cbxxxf由在))1(,1(fM处的切线方程是076yx,知.6)1(,1)1(,07)1(6fff即.3,0,32.121,623cbcbcbcbcb解得即故所求的解析式是.233)(23xxxxf(2).012,0363.363)(222xxxxxxxf即令解得.21,2121xx当;0)(,21,21xfxx时或当.0)(,2121xfx时故32()332fxxxx的单调增区间为(,12)和),21(,单调减区间为)21,21(.18、(1)解:依题意有:这组数据的中位数是7,即7n,故()fx的展开式中17237177()()(1)rrrrrrrTCxxCx,由371r可知2r,故展开式中1x的项的系数为211227C.......6分(2)xf的展开式中共8项,其中第4项和第5项的二项式系数最大,而第5项的系数等于第5项二项式系数,故第5项的系数最大,即最大项为5423147535xxxCT,第4项的系数等于第4项二项式系数的相反数,故第4项的系数最小,即最小项为2324137435xxxCT.......12分19、解:(1)的所有可能取值为0,1,2........1分设“第一次训练时取到i个新球(即i)”为事件iA(i0,1,2).因为集训前共有6个篮球,其中3个是新球,3个是旧球,所以51)0()(26230CCPAP,.......3分53)1()(2613131CCCPAP,.......4-8-分51)2()(26232CCPAP........5分所以的分布列为(注:不列表,不扣分)012P515351的数学期望为1512531510E........6分(2)设“从6个球中任意取出2个球,恰好取到一个新球”为事件B.则“第二次训练时恰好取到一个新球”就是事件12ABAB.而事件BA1、BA2互斥,所以,1212()()()
本文标题:湖北省黄冈中学2013-2014学年高二数学上学期期末考试试题理新人教A版
链接地址:https://www.777doc.com/doc-2291373 .html