您好,欢迎访问三七文档
栅格数据与矢量数据分类:地图2013-07-0121:051024人阅读评论(0)收藏举报GIS研究的数据是地理空间数据,这是区别于其他系统的根本原因。栅格数据与矢量数据是地理信息系统中空间数据组织的两种最基本的方式.栅格数据是以二维矩阵的形式来表示空间地物或现象分布的数据组织方式.每个矩阵单位称为一个栅格单元(cell).栅格的每个数据表示地物或现象的属性数据.因此栅格数据有属性明显,定位隐含的特点.而矢量数据结构是利用点,线,面的形式来表达现实世界,具有定位明显,属性隐含的特点。由于矢量数据具有数据结构紧凑,冗余度低,表达精度高,图形显示质量好,有利于网络和检索分析等优点。在GIS中得到广泛的应用,特别在小区域(大比例尺)制图中充分利用了它的精度高的优点。但是,随着RS广泛的应用,同时数据压缩技术,计算机性能的提高克服了栅格数据的数据量大等缺点,栅格数据将越来越发挥更大的作用。栅格数据的大规模应用,并将会占具主导地位。主要基于以下优点:(1)随RS技术的发展,并大规模的应用,栅格数据的使用将促使RS,GIS的一体化发展。RS成为空间数据动态更新的重要的数据源。遥感影像是以像元为单元的栅格结构存储的,图像处理技术极大的提高了栅格数据的前期处理能力。这些数据可以直接生成或转换为于GIS的栅格数据。(2)栅格数据可以极大的提高GIS的时空数据分析能力,栅格数据在图像的代数运算,空间统计分析等具有广泛的应用,可以促成GIS模型的建立。ARCGIS软件的高版本在这一方面以有较突出的表现。(3)三维可视化成为动态模拟现实世界的一个新的发展趋势.栅格数据是利用二维图像来模拟地理实体的,可利用栅格数据通过提高维数来实现三维可视化。(4)随WebGIS的发展,栅格数据数据结构简单,真实感强等特点,可以为大多数程序设计人员和用户理解和使用.特别是图像共享标准(如GIF)的建立,有利于GIS的栅格数据的共享.因此,栅格数据在信息共享方面更为实用.因此,随GIS发展,栅格数据和矢量数据均具不同程度的发展,但栅格数据要比矢量数据的应用更广泛,更有效.//////////////////////////////////////////////////矢量图像,也称为面向对象的图像或绘图图像,在数学上定义为一系列由线连接的点。矢量文件中的图形元素称为对象。每个对象都是一个自成一体的实体,它具有颜色、形状、轮廓、大小和屏幕位置等属性。既然每个对象都是一个自成一体的实体,就可以在维持它原有清晰度和弯曲度的同时,多次移动和改变它的属性,而不会影响图例中的其它对象。这些特征使基于矢量的程序特别适用于图例和三维建模,因为它们通常要求能创建和操作单个对象。基于矢量的绘图同分辨率无关。这意味着它们可以按最高分辨率显示到输出设备上。栅格图又称位图:一般用于照片品质的图像处理,是由许多像小方块一样的像素组成的图形。由其位置与颜色值表示,能表现出颜色阴影的变化。矢量图与点位图比较矢量图与分辨率无关,可以这么理解,不管矢量图放多大,都不影响它的质量和效果。矢量图的放大,只是参数的改变,电脑就会根据现有的分辨率重新计算出新的图像。点位图的质量取决于分辨率。一幅点位图放大几倍后,就会明显地出现“马赛克”的现象。矢量图可以十分灵活地进行编辑,矢量图的基本元素是对象,每个对象都是自成一体的实体,某个对象的改变不会影响到没有关联的对象。点位图的编辑受到限制。点位图是点(像素)的排列,局部移动了或者改变了就会影响到其他部分的点。////////////////////////////////////////////////////////////////2栅格、矢量数据结构的概念基于栅格模型的数据结构简称为栅格数据结构,是指将空间分割成有规则的网格,在各个网格上给出相应的属性值来表示地理实体的一种数据组织形式;而矢量数据结构是基于矢量模型,利用欧几里得(EUCLID)几何学中的点、线、面及其组合体来表示地理实体的空间分布。对于空间数据而言,栅格数据包括各种遥感数据、航测数据、航空雷达数据、各种摄影的图像数据,以及通过网格化的地图图像数据如地质图、地形图和其他专业图像数据。从类型上看,又分为:二值图、灰度图、256色索引和分类图(单字节图)、64K的高彩图(索引图、分类图和整数专业数据)(双字节图)、RGB真彩色图(3字节图)、RGBP透明真彩色叠加图等等。常用的数据格式的有TIFF、JPEG、BMP、PCX、GIF等。而矢量数据就更多,几乎所有的GIS软件都有自己特定格式的矢量数据。目前最常用的矢量数据格式有Arc/info的Coverage、e00,方正智绘的mrg,Mapinfo的mif,AutoDesk的dxf、dwg,Intergraph的dgn等等。在GIS和数字制图中,同种数据结构本身以及两种数据结构之间的融合构成了空间数据融合问题的主要内容。专业的3S站3s8.cn3栅格数据之间的融合在数字制图中和GIS工程中,经常用到不同来源、不同精度、不同内容的栅格图像数据进行复合而生成新的栅格图像。目前使用的各种多源图像处理与分析系统为栅格型地理信息系统的实现开辟一条新的途径,可实现栅格数据的各种融合。而在数字制图中,多源栅格图像数据之间的融合已经非常普遍。3.1融合方法在数字制图中,图像融合涉及色彩、光学等领域,在专业的图像处理软件(如ERDAS、PCI、PHOTOMAPPER)或一般的图像处理软件(如PHOTOSHOP)都可进行,主要是通过图像处理的方式透明地叠加显示各个图层的栅格图。一般要经过图像配准、图像调整、图像复合等环节。具体过程如下:⑴图像配准。各种图像由于各种不同原因会产生几何失真,为了使两幅或多幅图像所对应的地物吻合,分辨率一致,在融合之前,需要对图像数据进行几何精度纠正和配准,这是图像数据融合的前提。⑵图像调整。为了增强融合后的图像效果和某种特定内容的需要,进行一些必要的处理,如为改善图像清晰度而做的对比度、亮度的改变,为了突出图像中的边缘或某些特定部分而做的边缘增强(锐化)或反差增强,改变图像某部分的颜色而进行的色彩变化等。⑶图像复合。对于两幅或多幅普通栅格图像数据的叠加,需要对上层图像做透明处理,才能显示各个图层的图像,透明度就具体情况而定。在遥感图像的处理中,由于其图像的特殊性,他们之间的复合方式相对复杂而且多样化,其中效果最明显、应用最多的是进行彩色合成。中国3S吧3s8.cn3.2应用分析在实际应用中,栅格图像数据之间的融合目前最常用的有以下几个方面:⑴遥感图像之间的融合。主要包括不同传感器遥感数据的融合和不同时相遥感数据的融合。来自不同传感器的信息源有不同的特点,如用TM与SPOT遥感数据进行融合既可提高新图像的分辨率又可保持丰富的光谱信息;而不同时相遥感数据的融合对于动态监测有很重要的实用意义,如洪水监测、气象监测等。⑵遥感图像与地图图像的融合。这是当前应用较多的一种方法,一是遥感图像与栅格化的DEM融合生成立体的三维景观图像,显现逼真的现实效果;二是借助遥感图像的信息周期动态性和丰富性,经过与各种地图图像融合,可以从遥感图像的快速变化中发现变化的区域,进行数据的更新和各种动态分析。⑶地图图像之间的融合。为了更加了解该范围的地形地貌情况,或者更全面地比较分析该地区各种资源的相互关系,对该地区不同内容的多种地图图像数据进行融合。如地形图和各种专业图像如地质图、土地利用图、地籍图、林业资源状况图等的融合,土地利用图和地籍图的融合等等。4矢量数据之间的融合矢量数据是GIS和数字制图中最重要的数据源。目前很多GIS软件都有自己的数据格式,每种软件都有自己特定的数据模型,而正是这些软件的多样性,导致矢量数据存储格式和结构的不同。要进行各系统的数据共享,必须对多源数据进行融合。矢量数据之间的融合是应用最广泛的空间数据融合形式,也是空间数据融合研究的重点。目前对矢量数据的融合方法有多种,其中最主要的、应用最广泛的方法是先进行数据格式的转换即空间数据模型的融合,然后是几何位置纠正,最后是重新对地图数据各要素进行的重新分类组合、统一定义。中国3S吧3s8.cn4.1数据模型的融合由于各种数据格式各有自己的数据模型,格式转换就是把其他格式的数据经过专门的数据转换程序进行转换,变成本系统的数据格式,这是当前GIS软件系统共享数据的主要办法。如Arc/Info和MapInfo之间的融合,需要经过格式转换,统一到其中的一种空间数据模型。该方法一般要通过交换格式进行。许多GIS软件为了实现与其他软件交换数据,制订了明码的交换格式,如Arc/Info的E00格式、ArcView的Shape格式、MapInfo的Mif格式等。通过交换格式可以实现不同软件之间的数据转换。在这种模式下,其他数据格式经专门的数据转换程序进行格式转换后,复制到当前系统中的数据中。目前得到公认的几种重要的比较常用的空间数据格式有:ESRI公司的Arc/InfoCoverage、ArcShapeFiles、E00格式;AutoDesk的DXF格式和DWG格式;MapInfo的MIF格式;Intergraph的dgn格式等等。4.2几何位置纠正对于相同坐标系统和比例尺的数据而言,由于技术、人为或者经频繁的数据转换甚至是由于不同软件的因素,数据的精度会有差别。在融合过程中,需要进行几何位置的统一。如对精度要求不高,为了提高工作效率,在允许范围内,应该以当前系统的数据精度为准,对另一种或几种数据的几何位置进行纠正。如为了获得较高的精度,应以精度高的数据为准,对精度低的数据进行纠正。4.3地图数据要素重新统一定义融合后的空间矢量数据,应重新对要素分层、编码、符号系统、要素取舍等问题进行综合整理,统一定义。⑴统一分类分层、编码。对于空间数据,一般都按地图要素进行分层,如水系、交通、地形地貌、注记等,而每层又可根据需要分为点、线、面三类,并采用编码的方式来表述其属性。对融合到当前系统的数据,应根据地图要素或具体需要,以当前数据为标准或重新制定统一的要素层和要素编码。⑵统一符号系统。这是目前矢量数据转换的一个难点,由于各GIS软件对符号的定义不同,在符号的生成机制上可能差别很大,经转换后的数据在符号的统一上有一定难度,而且在符号的准确性上可能与原数据有差距。⑶数据的综合取舍。同一区域不同格式的空间矢量数据,要涉及到相同要素的重复表示问题,应综合取舍。一般有以下原则:详细的取代简略的,精度高的取代精度低的,新的取代旧的等等,但有时为了突出某种专题要素,或为了适应某种需要,应视具体情况综合取舍。数据转换模式的弊病是显而易见的,由于缺乏对空间对象统一的描述方法,转换后很难完全准确地表达原数据的信息,经常性地造成一些信息丢失,如Arc/Info数据的拓扑关系,经过格式转换后可能已经不复存在了。专业的3S站3s8.cn5矢量数据和栅格数据的融合空间数据的栅格结构和矢量结构是模拟地理信息的截然不同的两种方法。过去人们普遍认为这两种结构互不相容。原因是栅格数据结构需要大量的计算机内存来存储和处理,才能达到或接近与矢量数据结构相同的空间分辨率,而矢量结构在某些特定形式的处理中,很多技术问题又很难解决。栅格数据结构对于空间分析很容易,但输出的地图精确度稍差;相反矢量数据结构数据量小,且能够输出精美的地图,但空间分析相当困难等等。目前两种格式数据的融合已变得可能而且在广泛应用。在GIS工程中,很多的GIS系统已经集成化,能够对矢量和栅格结构的空间数据进行统一管理。而在数字制图中,两种数据结构的融合也在广泛应用。5.1栅格图象与线划矢量图融合这是两种结构数据简单的叠加,是GIS里数据融合的最低层次。如遥感栅格影像与线划矢量图叠加,遥感栅格影像或航空数字正射影像作为复合图的底层。线划矢量图可全部叠加,也可根据需要部分叠加,如水系边线、交通主干线、行政界线、注记要素等等。这种融合涉及到两个问题,一是如何在内存中同时显示栅格影像和矢量数据,并且要能够同比例尺缩放和漫游;二是几何定位纠正,使栅格影像上和线划矢量图中的同名点线相互套合
本文标题:栅格数据与矢量数据
链接地址:https://www.777doc.com/doc-2292657 .html