您好,欢迎访问三七文档
最优化计算1.启动方式:在命令栏中输入optimtool2.GUI优化工具界面ProblemSetupandResults计算结果显示Options优化选项设置QuickReference帮助(隐藏)3.优化问题描述及计算结果显示(1)ProblemSetupandResults计算结果显示Solver:选择优化问题的种类,每类优化问题对应不同的求解函数.Algorithm['ælgərɪð(ə)m]选择算法,每类优化问题对应不同的求解函数.例如对与fmincon函数,可用的算法有三种,Trustregionreflective(信赖域反射算法),Activeset(有效集算法),和Interiorpoint(内点算法),对于fminunc函数,可用的算法有两种:Largescale(大规模算法)和Mediumscale(中等规模的算法)Problem框组用于描述优化问题,包括:Objectivefunction目标函数Derivatives目标函数微分(或梯度)的计算方法Startpoint初始点Constraints用于描述约束条件,包括:Linearinequalities线性不等式约束:A为约束系数矩阵,b代表约束向量.Linearequalities:线性等式约束,Aeq为约束系数矩阵,beq为约束向量.Bounds,自变量的上下界约束NonlinearConstraintsfunction非线性约束函数Derivatives非线性约束函数的微分或梯度求解过程和结果.4.无约束优化fminunc(unconditional)用优化工具求f(x)=x2+4*x-6的极小值,初始点为x=0.fminsearch求f(x)=|x2-3*x+2|的极小值,初始点x=-75.fmincon约束优化f(x)=-x1x2x3,s.t.–x1-2*x2-2*x3=0x1+2*x2+2*x3=72初始值为(10,10,10)6.非线性最小二乘法(Isqnonlin求解器)Trustregionreflective(信赖域反射算法)(可输入上下界约束)Levenberg-Marquardt(L-M算法)自变量不能有上下界约束Gauss-Newton(高斯-牛顿算法)自变量不能有上下界约束求minS=(x2+x-1)2+(2*x2-3)2,初始点取x=57.线性规划linprog用单纯形法求解线性规划minf=-4x1-x2;s.t.–x1+2x2=42x1+3x2=12x1-x2=3,x1,x2=08.智能优化算法(1)ga求解器f(x)=x4-3*x3+x2-2由于遗传算法是一种随机算法,同样的参数每次求出的结果可能有稍微的区别,多次点击start按钮,极值点可能会发生变化.(2)模拟退火算法(simulannealbnd)相对比较慢
本文标题:最优化计算
链接地址:https://www.777doc.com/doc-2316955 .html