您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 消元法-小学应用题解题方法之十二
小学应用题解题方法之十二---消元法十二、消元法在数学中,“元”就是方程中的未知数。“消元法”是指借助消去未知数去解应用题的方法。当题中有两个或两个以上的未知数时,要同时求出它们是做不到的。这时要先消去一些未知数,使未知数减少到一个,才便于找到解题的途径。这种通过消去未知数的个数,使题中的数量关系达到单一化,从而先求出一个未知数,然后再将所求结果代入原题,逐步求出其他未知数的解题方法叫做消元法。(一)以同类数量相减的方法消元例买1张办公桌和2把椅子共用336元;买1张办公桌和5把椅子共用540元。求买1张办公桌和1把椅子各用多少钱?(适于四年级程度)解:这道题有两类数量:一类是办公桌的张数、椅子的把数,另一类是钱数。先把题中的数量按“同事横对、同名竖对”的原则排列成表12-1。这就是说,同一件事中的数量横向对齐,单位名称相同的数量上下对齐。表12-1从表12-1第②组的数量减去第①组对应的数量,有关办公桌的数量便消去,只剩下有关椅子的数量:5-2=3(把)3把椅子的钱数是:540-336=204(元)买1把椅子用钱:204÷3=68(元)把买1把椅子用68元这个数量代入原题,就可以求出买1张办公桌用的钱数是:336-68×2=336-136=200(元)答略。(二)以和、积、商、差代换某数的方法消元解题时,可用题中某两个数的和,或某两个数的积、商、差代换题中的某个数,以达到消元的目的。1.以两个数的和代换某数*例甲、乙两个书架上共有584本书,甲书架上的书比乙书架上的书少88本。两个书架上各有多少本书?(适于四年级程度)解:题中的数量关系可用下面等式表示:甲+乙=584①甲+88=乙②把②式代入①式(以甲与88的和代换乙),得:甲+甲+88=584甲×2+88=5842甲=584-88=496甲=496÷2=248(本)乙=248+88=336(本)答略。2.以两个数的积代换某数*例3双皮鞋和7双布鞋共值242元,一双皮鞋的钱数与5双布鞋的钱数相同。求每双皮鞋、布鞋各值多少钱?(适于四年级程度)解:因为1双皮鞋与5双布鞋的钱数相同,所以3双皮鞋的钱数与5×3=15(双)布鞋的钱数一样多。这样可以认为242元可以买布鞋:15+7=22(双)每双布鞋的钱数是:242÷22=11(元)每双皮鞋的钱数是:11×5=55(元)答略。3.以两个数的商代换某数*例5支钢笔和12支圆珠笔共值48元,一支钢笔的钱数与4支圆珠笔的钱数一样多。每支钢笔、圆珠笔各值多少钱?(适于五年级程度)解:根据“一支钢笔的钱数与4支圆珠笔的钱数一样多”,可用12÷4=3(支)的商把12支圆珠笔换为3支钢笔。现在可以认为,用48元可以买钢笔:5+3=8(支)每支钢笔值钱:48÷8=6(元)每支圆珠笔值钱:6÷4=1.5(元)答略。4.以两个数的差代换某数*例甲、乙、丙三个人共有235元钱,甲比乙多80元,比丙多90元。三个人各有多少钱?(适于五年级程度)解:题中三个人的钱数有下面关系:甲+乙+丙=235①甲-乙=80②甲-丙=90③由②、③得:乙=甲-80④丙=甲-90⑤用④、⑤分别代替①中的乙、丙,得:甲+(甲-80)+(甲-90)=235甲×3-170=235甲×3=235+170=405甲=405÷3=135(元)乙=135-80=55(元)丙=135-90=45(元)答略。(三)以较小数代换较大数的方法消元在用较小数量代换较大数量时,要把较小数量比较大数量少的数量加上,做到等量代换。*例18名男学生和14名女学生共采集松树籽78千克,每一名男学生比每一名女学生少采集1千克。每一名男、女学生各采集松树籽多少千克?(适于五年级程度)解:题中说“每一名男学生比每一名女学生少采集1千克”,则18名男生比女生少采集1×18=18(千克)。假设这18名男生也是女生(以小代大),就应在78千克上加上18名男生少采集的18千克松树籽。这样他们共采集松树籽:78+18=96(千克)因为已把18名男学生代换为女学生,所以可认为共有女学生:14+18=32(名)每一名女学生采集松树籽:96÷32=3(千克)每一名男学生采集松树籽:3-1=2(千克)答略。(四)以较大数代换较小数的方法消元在用较大数量代换较小数量时,要把较大数量比较小数量多的数量减去,做到等量代换。*例胜利小学买来9个同样的篮球和5个同样的足球,共付款432元。已知每个足球比每个篮球贵8元,篮球、足球的单价各是多少元?(适于五年级程度)解:假设把5个足球换为5个篮球,就可少用钱:8×5=40(元)这时可认为一共买来篮球:9+5=14(个)买14个篮球共用钱:432-40=392(元)篮球的单价是:392÷14=28(元)足球的单价是:28+8=36(元)答略。(五)通过把某一组数乘以一个数消元当应用题的两组数量中没有数值相等的两个同类数量时,应通过把某一组数量乘以一个数,而使同一类数量中有两个数值相等的数量,然后再消元。*例2匹马、3只羊每天共吃草38千克;8匹马、9只羊每天共吃草134千克。求一匹马和一只羊每天各吃草多少千克?(适于五年级程度)解:把题中条件摘录下来,排列成表12-2。表12-2把第①组中的数量乘以3得表12-3。表12-3第③组的数量中,羊的只数是9只;第②组的数量中,羊的只数也是9只。这样便可以从第②组的数量减去第③组的数量,从而消去羊的只数,得到2匹马吃草20千克。一匹马吃草:20÷2=10(千克)一只羊吃草:(38-10×2)÷3=18÷3=6(千克)答略。(六)通过把两组数乘以两个不同的数消元当应用题的两组数量中没有数值相等的两个同类的数量,并且不能通过把某一组数量乘以一个数,而使同一类的数量中有两个数值相等的数,而达到消元的目的时,应当通过把两组数量分别乘以两个不同的数,而使同一类的数量中有两个数值相等的数,然后再消元。*例1买3块橡皮和6支铅笔用1.68元钱,买4块橡皮和7支铅笔用2元钱。求一块橡皮和一支铅笔的价格各是多少钱?(适于五年级程度)解:把题中条件摘录下来排列成表12-4。表12-4要消去一个未知数,只把某一组数乘以一个数不行,要把两组数分别乘以两个不同的数,从而使两组数中有对应相等的两个同一类的数。因此,把第①组中的各数都乘以4,把第②组中的各数都乘以3,得表12-5。表12-5③-④得:3支铅笔用钱0.72元,一支铅笔的价格是:0.72÷3=0.24(元)一块橡皮的价格是:(1.68-0.24×6)÷3=(1.68-1.44)÷3=0.24÷3=0.08(元)答略。*例2有大杯和小杯若干个,它们的容量相同。现在往5个大杯和3个小杯里面放满砂糖,共420克;又往3个大杯和5个小杯里面放满砂糖,共380克。求一个大杯和一个小杯分别可以放入砂糖多少克?(适于五年级程度)解:摘录题中条件排列成表12-6。表12-6把表12-6中①组各数都乘以5,②组各数都乘以3,得表12-7。表12-7③-④得:16大杯放砂糖960克,所以,一个大杯里面可以放入砂糖:960÷16=60(克)一个小杯里面可以放入砂糖:(420-60×5)÷3=(420-300)÷3=40(克)答略。
本文标题:消元法-小学应用题解题方法之十二
链接地址:https://www.777doc.com/doc-2327256 .html