您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 江苏省东台市唐洋镇中学八年级数学下册《10.2黄金分割》学案
1《10.2黄金分割》学案学习目标A、经历探索黄金分割、黄金矩形、黄金三角形的过程,了解黄金分割在生活的各个领域有价值的运用;B、会找一条线段的黄金分割点;B、在应用中进一步理解线段的比、成比例线段,并在实际操作、思考、交流等过程中进一步感悟数学与生活的密切联系;C、通过建筑、艺术等生活实例使学生体会黄金分割的文化价值,提高学生的审美意识。学习重点:了解黄金分割、黄金矩形、黄金三角形的意义;学习难点:怎样做一条线段的黄金分割点;一、复习:前面一节课我们探讨了成比例线段,以及比例的性质,什么叫成比例线段?比例有哪些性质?什么叫比例中项?二、情境创设:1、P85欣赏芭蕾舞演员身体各部分之间适当的比例给人以匀称、协调的美感,请量出图中线段AB、AC的长度,并求出线段AB与AC的比值;2、上海东方明珠电视设计巧妙,整个塔体的挺拔秀丽,请量出图中线段AB、AC的长度,并求出线段AB与AC的比值;3、观察P84“你最喜欢的矩形”的调查结果,看看多数同学选择是哪一个矩形,在此矩形中,宽与长的比值约是多少?三、探索活动:活动一、计算ACAB(或ABBC)的值,引入黄金分割的概念.把矩形ABCD的长AB与宽BC画在同一条直线上,此时点B把线段AC分成两部分,如果ABBCACAB,那么线段AC被点B黄金分割。(有一种通俗的说法是:较小的线段与较大的线段的比等于较大的线段与整个线段之比)ACBCBAABC①③②④21342ABHFGNMEDCCBABC与AC(或AC与AB)的比值约为0.168,这个比值称为黄金比.注意:(1)一条线段的黄金分割点有两个,它们关于中点中心对称;(2)若矩形的两条邻边长度的比值约为0.618,这种矩形称为黄金矩形.(3)若在黄金矩形中截取一个正方形,那么剩余的矩形是黄金矩形吗?活动二、认识黄金分割在几何中的一些应用.(如黄金三角形)1、作顶角为36°的等腰△ABC;2、分别量出底边BC与腰AB的长度;3、作∠B的平分线,交AC于点D,量出△BCD的底边CD的长度;最后,分别求出△ABC与△BCD的底边与腰的长度的比值(精确到0.001)问:比值是多少?学生:大约是0.618所以我们把顶角为36°的三角形称为黄金三角形,它具有如下的性质:(1)618.0ABBC;(2)设BD是△ABC的底角的平分线,则△BCD也是黄金三角形,且点D是线段AC的黄金分割点;(3)如再作∠C的平分线,交BD于点E,则△CDE也是黄金三角形,如此继续下去,可得到一串黄金三角形;活动三、如图,五边形ABCDE的5条边相等,5个内角也相等,(1)找出图中的黄金三角形;(2)图中的点F、G、H、M、N分别是那些线段的黄金分割点?你能说明理由吗?解:(1)△ACD、△BDE、△CAE、△DAB、△EBC、△AGD、△ABN、△BCF、△BAH、△CMB、△CDG、△DNC、△DEH、△EDF、△EMA;(2)点F是线段CG、CE、DN、BD的黄金分割点,……………三、例题讲解:例1、若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为多少?变题:电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体,若舞台AB长为20米,试计算主持人应走到离A点至少多少米处是比较得体的位置?(结果精确到0.1米)例2、据有关实验测定,当气温处于人体正常体温(37oC)的黄金比值时,人体感到最舒适。这个气温约为_______oC(精确到1oC)。例3、如图,点C是AB的黄金分割点,AB=4,则AC2=________;(结果保留根号)例4、我们知道古希腊时期的巴台农神庙(ParthenomTemple)的正面是一个黄金矩形,若已知黄金矩形的长等于6,则这个黄金矩形的宽等于_________;(结果保留根号)ABCDABCDEFACBDABC图2ABC图13例5、如图的五角星中,AD=BC,且C、D两点都是AB的黄金分割点,AB=1,求CD的长;例6、科学研究表明,当人的下肢与身高比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高跟鞋鞋跟的最佳高度约为cm(精确到0.1cm);四、黄金分割的应用:(1)据有关测定,当气温处于人体正常体温的黄金比值时,人体感到最舒适。因此夏天使用空调时室内温度调到什么温度最适合?(人的正常体温36.2℃~37.2℃)“人体舒适指数”----36.5℃×0.618≈23℃,“人体舒适指数”为22℃∽24℃;(2)二胡的“千斤”放在琴弦的金分割点处,音色最佳;(3)维纳斯雕像、雅典娜女神象、海姑娘---阿曼达雕塑等肚脐之下的长度与身高之比接近0.618,芭蕾舞演员的比值只有0.618,所以要踮起脚尖!(4)植物茎的顶端向下,上下层的两片叶子间大约成137.50,这个角度对植物叶子采光、通风、光合作用最为有利,这是因为:137.5︰(360—137.5)≈0.618;(5)自然界的花瓣数目从里到外排列为:2、3、5、8、13、21、34、55、……,相邻两个数的比值越来越接近于0.618……;(6)你知道芭蕾舞演员跳舞时为什么要掂起脚尖吗?芭蕾舞演员的身段是苗条的,但下半身与身高的比值也只有0.58左右,演员在表演时掂起脚尖,身高就可以增加6-8cm.这时比值就接近0.618了,给人以更为优美的艺术形象;DCBA4作业一、选择题(A)1.(2009·义乌)在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cmB.13.6cmC.32.36cmD.7.64cm(A)2.一条线段的黄金分割点有()A.1个B.2个C.3个D.无数个(A)3.如图,点C把线段AB分成两条线段AC和BC.如果ACBCABAC,那么下列说法错误的是()A.线段AB被点C黄金分割B.点C叫做线段AB的黄金分割点C.AB与AC的比叫做黄金比D.BC与AC的比叫做黄金比(A)4.(2009·孝感)美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cmB.6cmC.8cmD.10cm(A)5.(2007·武汉)为了弘扬雷锋精神,某中学准备在校园内建造一座高2m的雷锋人体雕像,向全体师生征集设计方案.小兵同学查阅了有关资料,了解到黄金分割数常用于人体雕像的设计中.如图是小兵同学根据黄金分割数设计的雷锋人体雕像的方案,其中雷锋人体雕像下部的设计高度(精确到0.01m,参考数据:21.414,31.732,52.236)是()A.0.62mB.0.76mC.1.24mD.1.62m二、填空题(A)6.据有关测定,当气温处于人体正常体温(37℃)的黄金比值时,人体感到最舒适,则这个气温约为_________℃(结果保留整数).(A)7.如图,若点C是AB的黄金分割点.AB=1,则AC≈_______,BC≈______.(A)8.在等腰△ABC中,顶角∠A=36°,底角平分线BD交AC于点D,得点D是线段AC的黄金分割点.若AC=10cm.则AD≈_________cm.(A)9.我们知道古希腊时期的巴台农神庙(ParthenomTemple)的正面是一个黄金矩形.若已知黄金矩形的长等于6m,则这个黄金矩形的宽约为________m(精确到0.1m).三、解答题(A)10.若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为多少?5(B)11.如图,电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体如果舞台AB的长为20m,那么主持人应走到离点A多少米处时才是比较得体的位置(精确到0.1m)?(B)12.如果在一个矩形ABCD(AB<BC)中,510.6182ABBC,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFF(如图所示),请问矩形ABFE是否是黄金矩形?请说明理由.(C)13.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连接PD,在BA的延长线上取点F.使PF=PD,以AF为边作正方形AMEF,点M在边AD上,如图所示.(1)求AM、DM的长.(2)试说明:AM2=AD·DM(3)根据(2)中的结论你能找出图中的黄金分割点吗?
本文标题:江苏省东台市唐洋镇中学八年级数学下册《10.2黄金分割》学案
链接地址:https://www.777doc.com/doc-2330887 .html