您好,欢迎访问三七文档
内江师范学院数学模型实验报告册编制数学建模组审定牟廉明专业:数学与应用数学班级:级班学号:姓名:数学与信息科学学院2015年5月1说明一、学生在做实验之前必须要准备实验,主要包括预习与本次实验相关的理论知识,熟练与本次实验相关的软件操作,收集整理相关的实验参考资料,要求学生在做实验时能带上充足的参考资料;若准备不充分,则学生不得参加本次实验,不得书写实验报告;二、要求学生要认真做实验,主要是指不得迟到、早退和旷课,在做实验过程中要严格遵守实验室规章制度,认真完成实验内容,极积主动地向实验教师提问等;若学生无故旷课,则本次实验等级计为D;三、学生要认真工整地书写实验报告,实验报告的内容要紧扣实验的要求和目的,不得抄袭他人的实验报告;四、实验成绩评定分为A+、A、A-、B+、B、C、D各等级。根据实验准备、实验态度、实验报告的书写、实验报告的内容进行综合评定,具体对应等级如下:完全符合、非常符合、很符合、比较符合、基本符合、不符合、完全不符合。2实验名称:插值与数据拟合(实验一)指导教师:实验时数:4实验设备:安装了VC++、mathematica、matlab的计算机实验日期:2015年3月13日实验地点:第五教学楼北802实验目的:掌握插值与拟合的原理,熟悉插值与拟合的软件实现。实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装WindowsXPProfessional操作系统和装有VC++6.0的计算机。实验内容及要求下表给出了某工厂产品的生产批量与单位成本(元)的数据。从散点图可以明显地发现,生产批量在500以内时,单位成本对生产批量服从一种线性关系,生产批量超过500时服从另一种线性关系,此时单位成本明显下降。生产批量650340400800300600单位成本2.484.454.521.384.652.96生产批量720480440540750单位成本2.184.044.203.101.50要求:1、构造合适的模型全面地描述生产批量与单位成本的关系;2、对于这种关系,试采用分段函数进行详细分析。另外,从误差的角度出发,定量与定性相结合的方式来说明采用分段函数来描述这种关系的优点。实验过程:运用matlab进行以下程序运行:n=[300340400440480540600650720750800];t=[4.654.454.524.204.043.102.962.482.181.501.38];plot(n,t,'bo:')holdonx=log(n);y=log(t);c=polyfit(x,y,1);a=exp(c(2));b=c(1);a,bn1=300:20:480;t1=a*n1.^b;plot(n1,t1,'r-')x=log(n);y=log(t);c=polyfit(x,y,1);a=exp(c(2));b=c(1);a,b3n1=540:20:800;t1=a*n1.^b;plot(n1,t1,'b-')实验总结(由学生填写):对数学模型有了初步的了解,大致简单的掌握了MATLAB的用法以及和数学模型的关系。对学习数学模型有了很大的帮助。实验等级评定:4实验名称:数学规划模型(实验二)指导教师:实验时数:4实验设备:安装了VC++、mathematica、matlab的计算机实验日期:2015年3月24日实验地点:第五教学楼北802实验目的:掌握优化问题的建模思想和方法,熟悉优化问题的软件实现。实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装WindowsXPProfessional操作系统和装有数学软件的计算机。实验内容及要求一家保姆服务公司专门向雇主提供保姆服务。根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日。公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度公司(新保姆包括培训)65天。保姆从该公司而不是从雇主那里得到报酬,每人每月工资800元。春季开始时公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职。(1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划;哪些季度需求的增加不影响招聘计划?可以增加多少?(2)如果公司在每个季度结束后允许解雇保姆,请为公司制定下一年的招聘计划。实验过程:1,假设每个季度新招的人数分别为:x1,x2,x3,x4每个季度拥有的人数分别为:s1,s2,s3,s4根据题意在lingo中输入:min=s1+s2+s3+s4;65*s1=6000+5*x1;65*s2=7500+5*x2;65*s3=55005*x3+;65*s4=9000+5*x4;s1-x1=120;s1-0.15*s1+x2=s2;s2-0.15*s2+x3=s3;s3-0.15*s3+x4=s4;end结果:VariableValueReducedCostS1120.00000.000000S2116.50000.000000S399.025000.000000S4142.98570.0000005X10.0000000.8732231X214.500000.000000X30.0000000.9291667X458.814480.000000根据结果可以看出公司在春季和秋季不招人,在夏季招15人,在冬季招59人。2,假设公司每个季度解雇的人数分别为:y1,y2,y3在lingo中输入:model:min=s1+s2+s3+s4;65*s1=6000+5*x1;65*s2=7500+5*x2;65*s3=5500+5*x3;65*s4=9000+5*x4;s1-x1=120;s1-0.15*s1-y1+x2=s2;s2-0.15*s2-y2+x3=s3;s3-0.15*s3-y3+x4=s4;end结果;VariableValueReducedCostS1120.00000.000000S2116.50000.000000S384.615380.000000S4144.00640.000000X10.0000000.9291667X214.500000.000000X30.0000000.7147436E-01X472.083330.000000Y10.0000000.8333333E-01Y214.409620.000000Y30.0000000.8333333E-01可以看出公司在春季不招人也不解雇人,在夏季招15人,解雇15人,在秋季不招人也不解雇人,在冬季只招73人。实验总结(由学生填写):通过该实验,有掌握了数学模型中的一类题型,并且学会了使用lingo,该实验的实际应用性很强,对线性规划问题也有了一定的了解。实验等级评定:6实验名称:微分方程模型(实验三)指导教师:实验时数:4实验设备:安装了VC++、mathematica、matlab的计算机实验日期:年月日实验地点:第五教学楼北802实验目的:通过本次实验,让学生巩固微分方程的理论知识,掌握用微分方程来建立数学模型,会运用微分方程解决实际问题,并学会如何用Matlab软件来求解微分方程模型.实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装WindowsXPProfessional操作系统和装有Matlab软件的计算机。实验内容及要求意大利生物学家Ancona曾致力于鱼类种群相互制约关系的研究,他从第一次世界大战期间,地中海各港口捕获的几种鱼类捕获量百分比的资料中,发现鲨鱼等的比例有明显增加(见下表),而供其捕食的食用鱼的百分比却明显下降。显然战争使捕鱼量下降,食用鱼增加,鲨鱼等也随之增加,但为何鲨鱼的比例大幅增加呢?他无法解释这个现象。希望你建立一个食饵—捕食系统的数学模型,定量地回答这个问题。7实验过程:1.1符号说明:x1(t)-------食饵在t时刻的数量;x2(t)--------捕食者在t时刻的数量;r1------食饵独立生存时的增长率;r2-----捕食者独立存在时的增长率;m1-----捕食者掠取食物的能力;m2-----食饵对捕食者的供养能力;e------捕获能力系数;1.2模型假设1:食饵由于捕食者的存在始增长率降低,假设降低的程度与捕食者的数量成正比。2:捕食者由于食饵为他提供食物的作用使其死亡率降低或使之增长,假定增长的程度与食饵数量成正比1.3模型建立1:不考虑人工捕获dx1/dt=x1(r1-m1x2)dx2/dt=x2(-r2+m2x1)设食饵和捕食者的初始数量为x1(0)=x10,x2(0)=x208对于数据r1=1,m1=0.1,r2=0.5,m2=0.02,x10=25,x20=2,t的终值经试验后确定为15,即:x1=x1(1-0.1x2)x2=x2(-0.5+0.02x1)x1(0)=25,x2(0)=21.4模型求解functiondx=shier(t,x)dx=zeros(2,1);dx(1)=x(1)*(1-0.1*x(2));dx(2)=x(2)*(-0.5+0.02*x(1));[t,x]=ode45('shier',[015],[252]);plot(t,x(:,1),'-',t,x(:,2),'*')plot(x(:,1),x(:,2))结果如下:9上图反应了x1(t)与x2(t)的关系。可以猜测x1(t)与x2(t)都是周期函数。2:考虑人工捕获:设表示捕获能力的系数为e,相当于食饵的自然增长率由r1降为r1-e,捕食者的死亡率由r2增为r2+edx1/dt=x1[(r1-e)-m1x2]10dx2/dt=x2[-(r2+e)+m2x1]初始取值仍一样设战前捕获能力系数e=0.3,战争中降为0.1,则模型为:dx1/dt=x1(0.7-0.1x2)dx2/dt=x2(-0.8+0.02x1)x1(0)=25,x2(0)=2dx1/dt=x1(0.9-0.1x2)dx2/dt=x2(-0.6+0.02x1)x1(0)=25,x2(0)=2用以上方法可以求解这两个方程,即可以得出以下结论:战争中的鲨鱼比例比战前高实验总结(由学生填写):通过该实验,我们掌握了微分方程的求法以及新的一个数学模型的题型,使我们在学习数学模型的路上又前进了一大步。11实验名称:层次分析法(实验四)指导教师:实验时数:4实验设备:安装了VC++、mathematica、matlab的计算机实验日期:年月日实验地点:第五教学楼北902实验目的:熟悉有关层次分析法模型的建立与计算,熟悉Matlab的相关命令。实验准备:1.在开始本实验之前,请回顾教科书的相关内容;2.需要一台准备安装WindowsXPProfessional操作系统和装有Matlab的计算机。实验内容及要求试用层次分析法解决一个实际问题。问题可参考教材P296第4大题。实验过程:1.1问题分析用层次分析法解决一个实际问题:你要购置一台个人电脑,考虑功能、价格等的因素,如何做出决策。1.2模型假设假设有联想、华硕、戴尔、三星四款电脑供你选择,你会根据诸如功能、价格、性能、外观、口碑等一些准则来反复比较这四款电脑1.3模型建立将决策问题分解为3个层次:目标层A,表示“购买电脑”;准则层B,表示购买电脑所考虑的因素,有价格、售后、配置、外观、功能等;方案层C,表示所购买的电脑的品牌,联想、华硕、戴尔、三星。可得其层次结构为:121.4模型求解及结果解释构造成对比较矩阵B对A:1224811124211124211112422111118442baMC对B:1139911333111193111193cbM2136611223111162111162cbM3122811142111421111844cbM4133911133111331111933cbM5122411122
本文标题:数学模型实验4个
链接地址:https://www.777doc.com/doc-2331816 .html