您好,欢迎访问三七文档
1阅读材料新定义问题基础知识归纳:“新定义”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.基本方法归纳:新定义问题经常设计方程的解法、代数式的运算、转化思想等.注意问题归纳:“新概念”型问题成为近年来中考数学压轴题的新亮点.注重考查学生应用新的知识解决问题的能力【例1】对于平面直角坐标系中任意两点P1(x1,y1)、P2(x2,y2),称|x1﹣x2|+|y1﹣y2|为P1、P2两点的直角距离,记作:d(P1,P2).若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P0,Q)的最小值为P0到直线y=kx+b的直角距离.令P0(2,﹣3).O为坐标原点.则:(1)d(O,P0)=;(2)若P(a,﹣3)到直线y=x+1的直角距离为6,则a=.【例2】.阅读以下材料:对于三个数a、b、c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433;min{-1,2,3}=-1,…解决下列问题:(1)填空:如果min{2,2x+2,4-2x}=2,则x的取值范围为;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x;②根据①,你发现了结论:如果M{a,b,c}=min{a,b,c},那么(填a、b、c的大小关系),证明你发现的结论.③运用②的结论,填空:若M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,+2x-y,则x+y=(3)在同一直角坐标系中作出函数y=x+1,y=(x-1)2,y=2-x的图象(不需列表描点),通过观察图象,填空:min{x+1,(x-1)2,2-x}的最大值为.2【例3】定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且ECDE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MNAM≥BN,△AMC,△MND和△NBM均是等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究AMFS,BENS和四边形MNHGS的数量关系,并说明理由.【例4】小明在课外学习时遇到这样一个问题:定义:如果二次函数2111yaxbxc(11110,,,aabc是常数)与2222yaxbxc(20a,222,,abc是常数)满足1212120,,0aabbcc,则称这两个函数互为“旋转函数”.求232yxx函数的“旋转函数”.小明是这样思考的:由232yxx函数可知1111,3,3abc,根据120aa,1212,0bbcc求出222,,abc,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数232yxx的“旋转函数”;(2)若函数2423yxmx与22yxnxn互为“旋转函数”,求2015mn的值;(3)已知函数1142yxx的图象与x轴交于AB、两点,与y轴交于点C,点ABC、、关于原点的对称点分别是111ABC、、,试证明经过点111ABC、、的二次函数与函数1142yxx互为“旋转函数”.3【例5】定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=125,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【例6】阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.则:(1)等比数列3,6,12,…的公比q为,第4项是.(2)如果一个数列a1,a2,a3,a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2,a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an=(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.4【例7】如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(14x,x为自然数),十位上的数字为y,求y与x的函数关系式.【例8】如图①,半径为R,圆心角为n°的扇形面积是S扇形=,由弧长l=,得S扇形==••R=lR.通过观察,我们发现S扇形=lR类似于S三角形=×底×高.类比扇形,我们探索扇环(如图②,两个同心圆围成的圆环被扇形截得的一部分交作扇环)的面积公式及其应用.(1)设扇环的面积为S扇环,的长为l1,的长为l2,线段AD的长为h(即两个同心圆半径R与r的差).类比S梯形=×(上底+下底)×高,用含l1,l2,h的代数式表示S扇环,并证明;(2)用一段长为40m的篱笆围成一个如图②所示的扇环形花园,线段AD的长h为多少时,花园的面积最大,最大面积是多少?5【例9】知识迁移我们知道,函数)(00,02n,man)mx(ay的图像是由二次函数2axy的图像向右平移m个单位,再向上平移n个单位得到.类似地,函数)nmk(nmxky0,0,0的图像是由反比例函数xky的图像向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).理解应用函数113xy的图像可以由函数xy3的图像向右平移个单位,再向上平移个单位得到,其对称中心坐标为.灵活运用如图,在平面直角坐标系xOy中,请根据所给的xy4的图像画出函数224xy的图像,并根据该图像指出,当x在什么范围内变化时,y≥1?实际应用某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为441xy;若在tx(t≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x变化的函数关系为axy82.如果记忆存留量为21时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?6【例10】理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=3.tanD=tan15°=123=23(23)(23)=23.思路二利用科普书上的和(差)角正切公式:tan(α±β)=tantan1tantan.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)=tan60tan451tan60tan45=3113=23.思路三在顶角为30°的等腰三角形中,作腰上的高也可以…思路四…请解决下列问题(上述思路仅供参考).(1)类比:求出tan75°的值;(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;(3)拓展:如图3,直线112yx与双曲线4yx交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.7课后练习1.阅读理解:如图①,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图②的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,22)D.(50°,22)2.若正整数n使得在计算n+(n+1)+(n+2)的过程中,各数位上均不产生进位现象,则称n为“本位数”,例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为__.3.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.4.阅读理解:如图①,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分……将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.8小丽展示了确定∠BAC是图①△ABC的好角的两种情形.情形一:如图②,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图③,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.探究发现:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?___________________________.(填“是”或“不是”)(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠,∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为______________.应用提升:(3)小丽找到一个三角形,三个角分别为15°,60°,105°,发现60°和105°的两个角都是此三角形的好角.请你完成:如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,
本文标题:新定义阅读题材料
链接地址:https://www.777doc.com/doc-2350778 .html